
8
Modelling volatility and correlation

Learning Outcomes

In this chapter, you will learn how to

● Discuss the features of data that motivate the use of GARCH
models

● Explain how conditional volatility models are estimated

● Test for ‘ARCH-effects’ in time series data

● Produce forecasts from GARCH models

● Contrast various models from the GARCH family

● Discuss the three hypothesis testing procedures available under
maximum likelihood estimation

● Construct multivariate conditional volatility models and
compare between alternative specifications

● Estimate univariate and multivariate GARCH models in EViews

8.1 Motivations: an excursion into non-linearity land

All of the models that have been discussed in chapters 2--7 of this book

have been linear in nature -- that is, the model is linear in the parameters,

so that there is one parameter multiplied by each variable in the model.

For example, a structural model could be something like

y = β1 + β2x2 + β3x3 + β4x4 + u (8.1)

or more compactly y = Xβ + u. It was additionally assumed that ut ∼
N(0, σ 2).

The linear paradigm as described above is a useful one. The properties

of linear estimators are very well researched and very well understood.

Many models that appear, prima facie, to be non-linear, can be made linear

379



380 Introductory Econometrics for Finance

by taking logarithms or some other suitable transformation. However, it

is likely that many relationships in finance are intrinsically non-linear.

As Campbell, Lo and MacKinlay (1997) state, the payoffs to options are

non-linear in some of the input variables, and investors’ willingness to

trade off returns and risks are also non-linear. These observations provide

clear motivations for consideration of non-linear models in a variety of

circumstances in order to capture better the relevant features of the data.

Linear structural (and time series) models such as (8.1) are also unable

to explain a number of important features common to much financial

data, including:

● Leptokurtosis -- that is, the tendency for financial asset returns to have

distributions that exhibit fat tails and excess peakedness at the mean.

● Volatility clustering or volatility pooling -- the tendency for volatility in

financial markets to appear in bunches. Thus large returns (of either

sign) are expected to follow large returns, and small returns (of

either sign) to follow small returns. A plausible explanation for this

phenomenon, which seems to be an almost universal feature of asset

return series in finance, is that the information arrivals which drive

price changes themselves occur in bunches rather than being evenly

spaced over time.

● Leverage effects -- the tendency for volatility to rise more following a large

price fall than following a price rise of the same magnitude.

Campbell, Lo and MacKinlay (1997) broadly define a non-linear data gen-

erating process as one where the current value of the series is related

non-linearly to current and previous values of the error term

yt = f (ut , ut−1, ut−2, . . .) (8.2)

where ut is an iid error term and f is a non-linear function. According to

Campbell, Lo and MacKinlay, a more workable and slightly more specific

definition of a non-linear model is given by the equation

yt = g(ut−1, ut−2, . . .) + ut σ 2(ut−1, ut−2, . . .) (8.3)

where g is a function of past error terms only, and σ 2 can be interpreted

as a variance term, since it is multiplied by the current value of the error.

Campbell, Lo and MacKinlay usefully characterise models with non-linear

g(•) as being non-linear in mean, while those with non-linear σ (•)2 are

characterised as being non-linear in variance.

Models can be linear in mean and variance (e.g. the CLRM, ARMA mod-

els) or linear in mean, but non-linear in variance (e.g. GARCH models).
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Models could also be classified as non-linear in mean but linear in variance

(e.g. bicorrelations models, a simple example of which is of the following

form (see Brooks and Hinich, 1999))

yt = α0 + α1 yt−1 yt−2 + ut (8.4)

Finally, models can be non-linear in both mean and variance (e.g. the

hybrid threshold model with GARCH errors employed by Brooks, 2001).

8.1.1 Types of non-linear models

There are an infinite number of different types of non-linear model. How-

ever, only a small number of non-linear models have been found to be

useful for modelling financial data. The most popular non-linear finan-

cial models are the ARCH or GARCH models used for modelling and fore-

casting volatility, and switching models, which allow the behaviour of a

series to follow different processes at different points in time. Models for

volatility and correlation will be discussed in this chapter, with switching

models being covered in chapter 9.

8.1.2 Testing for non-linearity

How can it be determined whether a non-linear model may potentially be

appropriate for the data? The answer to this question should come at least

in part from financial theory: a non-linear model should be used where

financial theory suggests that the relationship between variables should

be such as to require a non-linear model. But the linear versus non-linear

choice may also be made partly on statistical grounds -- deciding whether

a linear specification is sufficient to describe all of the most important

features of the data at hand.

So what tools are available to detect non-linear behaviour in financial

time series? Unfortunately, ‘traditional’ tools of time series analysis (such

as estimates of the autocorrelation or partial autocorrelation function, or

‘spectral analysis’, which involves looking at the data in the frequency

domain) are likely to be of little use. Such tools may find no evidence of

linear structure in the data, but this would not necessarily imply that the

same observations are independent of one another.

However, there are a number of tests for non-linear patterns in time

series that are available to the researcher. These tests can broadly be split

into two types: general tests and specific tests. General tests, also some-

times called ‘portmanteau’ tests, are usually designed to detect many de-

partures from randomness in data. The implication is that such tests will
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detect a variety of non-linear structures in data, although these tests are

unlikely to tell the researcher which type of non-linearity is present! Per-

haps the simplest general test for non-linearity is Ramsey’s RESET test

discussed in chapter 4, although there are many other popular tests avail-

able. One of the most widely used tests is known as the BDS test (see Brock

et al., 1996) named after the three authors who first developed it. BDS is

a pure hypothesis test. That is, it has as its null hypothesis that the data

are pure noise (completely random), and it has been argued to have power

to detect a variety of departures from randomness -- linear or non-linear

stochastic processes, deterministic chaos, etc. (see Brock et al., 1991). The

BDS test follows a standard normal distribution under the null hypothe-

sis. The details of this test, and others, are technical and beyond the scope

of this book, although computer code for BDS estimation is now widely

available free of charge on the Internet.

As well as applying the BDS test to raw data in an attempt to ‘see if

there is anything there’, another suggested use of the test is as a model

diagnostic. The idea is that a proposed model (e.g. a linear model, GARCH,

or some other non-linear model) is estimated, and the test applied to the

(standardised) residuals in order to ‘see what is left’. If the proposed model

is adequate, the standardised residuals should be white noise, while if the

postulated model is insufficient to capture all of the relevant features of

the data, the BDS test statistic for the standardised residuals will be statis-

tically significant. This is an excellent idea in theory, but has difficulties in

practice. First, if the postulated model is a non-linear one (such as GARCH),

the asymptotic distribution of the test statistic will be altered, so that it

will no longer follow a normal distribution. This requires new critical val-

ues to be constructed via simulation for every type of non-linear model

whose residuals are to be tested. More seriously, if a non-linear model is

fitted to the data, any remaining structure is typically garbled, resulting

in the test either being unable to detect additional structure present in

the data (see Brooks and Henry, 2000) or selecting as adequate a model

which is not even in the correct class for that data generating process (see

Brooks and Heravi, 1999).

The BDS test is available in EViews. To run it on a given series, simply

open the series to be tested (which may be a set of raw data or residuals

from an estimated model) so that it appears as a spreadsheet. Then se-

lect the View menu and BDS Independence Test . . . . You will then be

offered various options. Further details are given in the EViews User’s

Guide.

Other popular tests for non-linear structure in time series data include

the bispectrum test due to Hinich (1982), the bicorrelation test (see Hsieh,
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1993; Hinich, 1996; or Brooks and Hinich, 1999 for its multivariate gener-

alisation).

Most applications of the above tests conclude that there is non-linear

dependence in financial asset returns series, but that the dependence

is best characterised by a GARCH-type process (see Hinich and Patterson,

1985; Baillie and Bollerslev, 1989; Brooks, 1996; and the references therein

for applications of non-linearity tests to financial data).

Specific tests, on the other hand, are usually designed to have power

to find specific types of non-linear structure. Specific tests are unlikely to

detect other forms of non-linearities in the data, but their results will by

definition offer a class of models that should be relevant for the data at

hand. Examples of specific tests will be offered later in this and subsequent

chapters.

8.2 Models for volatility

Modelling and forecasting stock market volatility has been the subject of

vast empirical and theoretical investigation over the past decade or so

by academics and practitioners alike. There are a number of motivations

for this line of inquiry. Arguably, volatility is one of the most important

concepts in the whole of finance. Volatility, as measured by the standard

deviation or variance of returns, is often used as a crude measure of

the total risk of financial assets. Many value-at-risk models for measuring

market risk require the estimation or forecast of a volatility parameter.

The volatility of stock market prices also enters directly into the Black--

Scholes formula for deriving the prices of traded options.

The next few sections will discuss various models that are appropriate

to capture the stylised features of volatility, discussed below, that have

been observed in the literature.

8.3 Historical volatility

The simplest model for volatility is the historical estimate. Historical

volatility simply involves calculating the variance (or standard deviation)

of returns in the usual way over some historical period, and this then

becomes the volatility forecast for all future periods. The historical aver-

age variance (or standard deviation) was traditionally used as the volatil-

ity input to options pricing models, although there is a growing body

of evidence suggesting that the use of volatility predicted from more
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sophisticated time series models will lead to more accurate option val-

uations (see, for example, Akgiray, 1989; or Chu and Freund, 1996). Histor-

ical volatility is still useful as a benchmark for comparing the forecasting

ability of more complex time models.

8.4 Implied volatility models

All pricing models for financial options require a volatility estimate or

forecast as an input. Given the price of a traded option obtained from

transactions data, it is possible to determine the volatility forecast over

the lifetime of the option implied by the option’s valuation. For example,

if the standard Black--Scholes model is used, the option price, the time

to maturity, a risk-free rate of interest, the strike price and the current

value of the underlying asset, are all either specified in the details of the

options contracts or are available from market data. Therefore, given all

of these quantities, it is possible to use a numerical procedure, such as the

method of bisections or Newton--Raphson to derive the volatility implied

by the option (see Watsham and Parramore, 2004). This implied volatility

is the market’s forecast of the volatility of underlying asset returns over

the lifetime of the option.

8.5 Exponentially weighted moving average models

The exponentially weighted moving average (EWMA) is essentially a sim-

ple extension of the historical average volatility measure, which allows

more recent observations to have a stronger impact on the forecast of

volatility than older data points. Under an EWMA specification, the latest

observation carries the largest weight, and weights associated with previ-

ous observations decline exponentially over time. This approach has two

advantages over the simple historical model. First, volatility is in practice

likely to be affected more by recent events, which carry more weight,

than events further in the past. Second, the effect on volatility of a sin-

gle given observation declines at an exponential rate as weights attached

to recent events fall. On the other hand, the simple historical approach

could lead to an abrupt change in volatility once the shock falls out of

the measurement sample. And if the shock is still included in a relatively

long measurement sample period, then an abnormally large observation

will imply that the forecast will remain at an artificially high level even if

the market is subsequently tranquil. The exponentially weighted moving
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average model can be expressed in several ways, e.g.

σ 2
t = (1 − λ)

∞
∑

j=0

λ j (rt− j − r̄ )2 (8.5)

where σ 2
t is the estimate of the variance for period t , which also becomes

the forecast of future volatility for all periods, r̄ is the average return

estimated over the observations and λ is the ‘decay factor’, which de-

termines how much weight is given to recent versus older observations.

The decay factor could be estimated, but in many studies is set at 0.94

as recommended by RiskMetrics, producers of popular risk measurement

software. Note also that RiskMetrics and many academic papers assume

that the average return, r̄ , is zero. For data that is of daily frequency or

higher, this is not an unreasonable assumption, and is likely to lead to

negligible loss of accuracy since it will typically be very small. Obviously,

in practice, an infinite number of observations will not be available on

the series, so that the sum in (8.5) must be truncated at some fixed lag. As

with exponential smoothing models, the forecast from an EWMA model

for all prediction horizons is the most recent weighted average estimate.

It is worth noting two important limitations of EWMA models. First,

while there are several methods that could be used to compute the EWMA,

the crucial element in each case is to remember that when the infinite

sum in (8.5) is replaced with a finite sum of observable data, the weights

from the given expression will now sum to less than one. In the case of

small samples, this could make a large difference to the computed EWMA

and thus a correction may be necessary. Second, most time-series mod-

els, such as GARCH (see below), will have forecasts that tend towards the

unconditional variance of the series as the prediction horizon increases.

This is a good property for a volatility forecasting model to have, since

it is well known that volatility series are ‘mean-reverting’. This implies

that if they are currently at a high level relative to their historic average,

they will have a tendency to fall back towards their average level, while

if they are at a low level relative to their historic average, they will have

a tendency to rise back towards the average. This feature is accounted for

in GARCH volatility forecasting models, but not by EWMAs.

8.6 Autoregressive volatility models

Autoregressive volatility models are a relatively simple example from the

class of stochastic volatility specifications. The idea is that a time se-

ries of observations on some volatility proxy are obtained. The standard
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Box--Jenkins-type procedures for estimating autoregressive (or ARMA) mod-

els can then be applied to this series. If the quantity of interest in the study

is a daily volatility estimate, two natural proxies have been employed in

the literature: squared daily returns, or daily range estimators. Produc-

ing a series of daily squared returns trivially involves taking a column of

observed returns and squaring each observation. The squared return at

each point in time, t , then becomes the daily volatility estimate for day

t . A range estimator typically involves calculating the log of the ratio of

the highest observed price to the lowest observed price for trading day t ,

which then becomes the volatility estimate for day t

σ 2
t = log

(

hight

lowt

)

(8.6)

Given either the squared daily return or the range estimator, a standard

autoregressive model is estimated, with the coefficients βi estimated us-

ing OLS (or maximum likelihood -- see below). The forecasts are also pro-

duced in the usual fashion discussed in chapter 5 in the context of ARMA

models

σ 2
t = β0 +

p
∑

j=1

β jσ
2
t− j + εt (8.7)

8.7 Autoregressive conditionally heteroscedastic (ARCH) models

One particular non-linear model in widespread usage in finance is known

as an ‘ARCH’ model (ARCH stands for ‘autoregressive conditionally het-

eroscedastic’). To see why this class of models is useful, recall that a typi-

cal structural model could be expressed by an equation of the form given

in (8.1) above with ut ∼ N(0, σ 2). The assumption of the CLRM that the

variance of the errors is constant is known as homoscedasticity (i.e. it is

assumed that var(ut ) = σ 2). If the variance of the errors is not constant,

this would be known as heteroscedasticity. As was explained in chapter 4,

if the errors are heteroscedastic, but assumed homoscedastic, an implica-

tion would be that standard error estimates could be wrong. It is unlikely

in the context of financial time series that the variance of the errors will

be constant over time, and hence it makes sense to consider a model that

does not assume that the variance is constant, and which describes how

the variance of the errors evolves.

Another important feature of many series of financial asset returns

that provides a motivation for the ARCH class of models, is known as

‘volatility clustering’ or ‘volatility pooling’. Volatility clustering describes
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the tendency of large changes in asset prices (of either sign) to follow

large changes and small changes (of either sign) to follow small changes.

In other words, the current level of volatility tends to be positively corre-

lated with its level during the immediately preceding periods. This phe-

nomenon is demonstrated in figure 8.1, which plots daily S&P500 returns

for January 1990--December 1999.

The important point to note from figure 8.1 is that volatility occurs in

bursts. There appears to have been a prolonged period of relative tranquil-

ity in the market during the mid-1990s, evidenced by only relatively small

positive and negative returns. On the other hand, during mid-1997 to late

1998, there was far more volatility, when many large positive and large

negative returns were observed during a short space of time. Abusing the

terminology slightly, it could be stated that ‘volatility is autocorrelated’.

How could this phenomenon, which is common to many series of finan-

cial asset returns, be parameterised (modelled)? One approach is to use

an ARCH model. To understand how the model works, a definition of the

conditional variance of a random variable, ut , is required. The distinction

between the conditional and unconditional variances of a random variable

is exactly the same as that of the conditional and unconditional mean.

The conditional variance of ut may be denoted σ 2
t , which is written as

σ 2
t = var(ut | ut−1, ut−2, . . .) = E[(ut − E(ut ))

2 | ut−1, ut−2, . . .] (8.8)

It is usually assumed that E(ut ) = 0, so

σ 2
t = var(ut | ut−1, ut−2, . . .) = E

[

u2
t |ut−1, ut−2, . . .

]

(8.9)

Equation (8.9) states that the conditional variance of a zero mean nor-

mally distributed random variable ut is equal to the conditional expected



388 Introductory Econometrics for Finance

value of the square of ut . Under the ARCH model, the ‘autocorrelation in

volatility’ is modelled by allowing the conditional variance of the error

term, σ 2
t , to depend on the immediately previous value of the squared

error

σ 2
t = α0 + α1u2

t−1 (8.10)

The above model is known as an ARCH(1), since the conditional variance

depends on only one lagged squared error. Notice that (8.10) is only a par-

tial model, since nothing has been said yet about the conditional mean.

Under ARCH, the conditional mean equation (which describes how the

dependent variable, yt , varies over time) could take almost any form that

the researcher wishes. One example of a full model would be

yt = β1 + β2x2t + β3x3t + β4x4t + ut ut ∼ N
(

0, σ 2
t

)

(8.11)

σ 2
t = α0 + α1u2

t−1 (8.12)

The model given by (8.11) and (8.12) could easily be extended to the general

case where the error variance depends on q lags of squared errors, which

would be known as an ARCH(q) model:

σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αqu2

t−q (8.13)

Instead of calling the conditional variance σ 2
t , in the literature it is often

called ht , so that the model would be written

yt = β1 + β2x2t + β3x3t + β4x4t + ut ut ∼ N(0, ht ) (8.14)

ht = α0 + α1u2
t−1 + α2u2

t−2 + · · · + αqu2
t−q (8.15)

The remainder of this chapter will use σ 2
t to denote the conditional vari-

ance at time t , except for computer instructions where ht will be used

since it is easier not to use Greek letters.

8.7.1 Another way of expressing ARCH models

For illustration, consider an ARCH(1). The model can be expressed in two

ways that look different but are in fact identical. The first is as given in

(8.11) and (8.12) above. The second way would be as follows

yt = β1 + β2x2t + β3x3t + β4x4t + ut (8.16)

ut = vtσt vt ∼ N(0, 1) (8.17)

σ 2
t = α0 + α1u2

t−1 (8.18)

The form of the model given in (8.11) and (8.12) is more commonly pre-

sented, although specifying the model as in (8.16)--(8.18) is required in
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order to use a GARCH process in a simulation study (see chapter 12). To

show that the two methods for expressing the model are equivalent, con-

sider that in (8.17), vt is normally distributed with zero mean and unit

variance, so that ut will also be normally distributed with zero mean and

variance σ 2
t .

8.7.2 Non-negativity constraints

Since ht is a conditional variance, its value must always be strictly posi-

tive; a negative variance at any point in time would be meaningless. The

variables on the RHS of the conditional variance equation are all squares

of lagged errors, and so by definition will not be negative. In order to

ensure that these always result in positive conditional variance estimates,

all of the coefficients in the conditional variance are usually required to

be non-negative. If one or more of the coefficients were to take on a neg-

ative value, then for a sufficiently large lagged squared innovation term

attached to that coefficient, the fitted value from the model for the con-

ditional variance could be negative. This would clearly be nonsensical. So,

for example, in the case of (8.18), the non-negativity condition would be

α0 ≥ 0 and α1 ≥ 0. More generally, for an ARCH(q) model, all coefficients

would be required to be non-negative: αi ≥ 0 ∀ i = 0, 1, 2, . . . , q . In fact,

this is a sufficient but not necessary condition for non-negativity of the

conditional variance (i.e. it is a slightly stronger condition than is actually

necessary).

8.7.3 Testing for ‘ARCH effects’

A test for determining whether ‘ARCH-effects’ are present in the residuals

of an estimated model may be conducted using the steps outlined in

box 8.1.

Thus, the test is one of a joint null hypothesis that all q lags of the

squared residuals have coefficient values that are not significantly differ-

ent from zero. If the value of the test statistic is greater than the critical

value from the χ2 distribution, then reject the null hypothesis. The test

can also be thought of as a test for autocorrelation in the squared residu-

als. As well as testing the residuals of an estimated model, the ARCH test

is frequently applied to raw returns data.

8.7.4 Testing for ‘ARCH effects’ in exchange rate returns using EViews

Before estimating a GARCH-type model, it is sensible first to compute the

Engle (1982) test for ARCH effects to make sure that this class of models is

appropriate for the data. This exercise (and the remaining exercises of this

chapter), will employ returns on the daily exchange rates where there are
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Box 8.1 Testing for ‘ARCH effects’

(1) Run any postulated linear regression of the form given in the equation above, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + ut (8.19)

saving the residuals, ût .

(2) Square the residuals, and regress them on q own lags to test for ARCH of order q,

i.e. run the regression

û2
t = γ0 + γ1û2

t−1 + γ2û2
t−2 + · · · + γq û2

t−q + vt (8.20)

where vt is an error term.

Obtain R2 from this regression.

(3) The test statistic is defined as TR2 (the number of observations multiplied by the

coefficient of multiple correlation) from the last regression, and is distributed as a

χ 2(q).

(4) The null and alternative hypotheses are

H0 : γ1 = 0 and γ2 = 0 and γ3 = 0 and . . . and γq = 0

H1 : γ1 �= 0 or γ2 �= 0 or γ3 �= 0 or . . . or γq �= 0

1,827 observations. Models of this kind are inevitably more data intensive

than those based on simple linear regressions, and hence, everything else

being equal, they work better when the data are sampled daily rather

than at a lower frequency.

A test for the presence of ARCH in the residuals is calculated by regress-

ing the squared residuals on a constant and p lags, where p is set by the

user. As an example, assume that p is set to 5. The first step is to esti-

mate a linear model so that the residuals can be tested for ARCH. From

the main menu, select Quick and then select Estimate Equation. In the

Equation Specification Editor, input rgbp c ar(1) ma(1) which will estimate

an ARMA(1,1) for the pound-dollar returns.1 Select the Least Squares (NLA

and ARMA) procedure to estimate the model, using the whole sample

period and press the OK button (output not shown).

The next step is to click on View from the Equation Window and to

select Residual Tests and then Heteroskedasticity Tests . . . . In the ‘Test

type’ box, choose ARCH and the number of lags to include is 5, and press

OK. The output below shows the Engle test results.

1 Note that the (1,1) order has been chosen entirely arbitrarily at this stage. However, it is

important to give some thought to the type and order of model used even if it is not of

direct interest in the problem at hand (which will later be termed the ‘conditional

mean’ equation), since the variance is measured around the mean and therefore any

mis-specification in the mean is likely to lead to a mis-specified variance.
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Heteroskedasticity Test: ARCH

F-statistic 5.909063 Prob. F(5,1814) 0.0000

Obs*R-squared 29.16797 Prob. Chi-Square(5) 0.0000

Test Equation:

Dependent Variable: RESID∧2

Method: Least Squares

Date: 09/06/07 Time: 14:41

Sample (adjusted): 7/14/2002 7/07/2007

Included observations: 1820 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 0.154689 0.011369 13.60633 0.0000

RESID∧2(-1) 0.118068 0.023475 5.029627 0.0000

RESID∧2(-2) −0.006579 0.023625 −0.278463 0.7807

RESID∧2(-3) 0.029000 0.023617 1.227920 0.2196

RESID∧2(-4) −0.032744 0.023623 −1.386086 0.1659

RESID∧2(-5) −0.020316 0.023438 −0.866798 0.3862

R-squared 0.016026 Mean dependent var 0.169496

Adjusted R-squared 0.013314 S.D. dependent var 0.344448

S.E. of regression 0.342147 Akaike info criterion 0.696140

Sum squared resid 212.3554 Schwarz criterion 0.714293

Log likelihood −627.4872 Hannan-Quinn criter. 0.702837

F-statistic 5.909063 Durbin-Watson stat 1.995904

Prob(F-statistic) 0.000020

Both the F -version and the LM-statistic are very significant, suggesting the

presence of ARCH in the pound--dollar returns.

8.7.5 Limitations of ARCH(q) models

ARCH provided a framework for the analysis and development of time

series models of volatility. However, ARCH models themselves have rarely

been used in the last decade or more, since they bring with them a num-

ber of difficulties:

● How should the value of q, the number of lags of the squared residual

in the model, be decided? One approach to this problem would be the

use of a likelihood ratio test, discussed later in this chapter, although

there is no clearly best approach.

● The value of q, the number of lags of the squared error that are required

to capture all of the dependence in the conditional variance, might

be very large. This would result in a large conditional variance model

that was not parsimonious. Engle (1982) circumvented this problem by
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specifying an arbitrary linearly declining lag length on an ARCH(4)

σ 2
t = γ0 + γ1

(

0.4û2
t−1 + 0.3û2

t−2 + 0.2û2
t−3 + 0.1û2

t−4

)

(8.21)

such that only two parameters are required in the conditional variance

equation (γ0 and γ1), rather than the five which would be required for

an unrestricted ARCH(4).

● Non-negativity constraints might be violated. Everything else equal, the more

parameters there are in the conditional variance equation, the more

likely it is that one or more of them will have negative estimated values.

A natural extension of an ARCH(q) model which overcomes some of these

problems is a GARCH model. In contrast with ARCH, GARCH models are

extremely widely employed in practice.

8.8 Generalised ARCH (GARCH) models

The GARCH model was developed independently by Bollerslev (1986) and

Taylor (1986). The GARCH model allows the conditional variance to be de-

pendent upon previous own lags, so that the conditional variance equa-

tion in the simplest case is now

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.22)

This is a GARCH(1,1) model. σ 2
t is known as the conditional variance since

it is a one-period ahead estimate for the variance calculated based on any

past information thought relevant. Using the GARCH model it is possible

to interpret the current fitted variance, ht , as a weighted function of a

long-term average value (dependent on α0), information about volatility

during the previous period (α1u2
t−1) and the fitted variance from the model

during the previous period (βσt−1
2). Note that the GARCH model can be

expressed in a form that shows that it is effectively an ARMA model for

the conditional variance. To see this, consider that the squared return at

time t relative to the conditional variance is given by

εt = u2
t − σ 2

t (8.23)

or

σ 2
t = u2

t − εt (8.24)

Using the latter expression to substitute in for the conditional variance

in (8.22)

u2
t − εt = α0 + α1u2

t−1 + β
(

u2
t−1 − εt−1

)

(8.25)
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Rearranging

u2
t = α0 + α1u2

t−1 + βu2
t−1 − βεt−1 + εt (8.26)

so that

u2
t = α0 + (α1 + β)u2

t−1 − βεt−1 + εt (8.27)

This final expression is an ARMA(1,1) process for the squared errors.

Why is GARCH a better and therefore a far more widely used model than

ARCH? The answer is that the former is more parsimonious, and avoids

overfitting. Consequently, the model is less likely to breach non-negativity

constraints. In order to illustrate why the model is parsimonious, first take

the conditional variance equation in the GARCH(1,1) case, subtract 1 from

each of the time subscripts of the conditional variance equation in (8.22),

so that the following expression would be obtained

σ 2
t−1 = α0 + α1u2

t−2 + βσ 2
t−2 (8.28)

and subtracting 1 from each of the time subscripts again

σ 2
t−2 = α0 + α1u2

t−3 + βσ 2
t−3 (8.29)

Substituting into (8.22) for σ 2
t−1

σ 2
t = α0 + α1u2

t−1 + β
(

α0 + α1u2
t−2 + βσ 2

t−2

)

(8.30)

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + β2σ 2

t−2 (8.31)

Now substituting into (8.31) for σ 2
t−2

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + β2

(

α0 + α1u2
t−3 + βσ 2

t−3

)

(8.32)

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + α0β

2 + α1β
2u2

t−3 + β3σ 2
t−3 (8.33)

σ 2
t = α0(1 + β + β2) + α1u2

t−1(1 + βL + β2L2) + β3σ 2
t−3 (8.34)

An infinite number of successive substitutions of this kind would yield

σ 2
t = α0(1 + β + β2 + · · ·) + α1u2

t−1(1 + βL + β2L2 + · · ·) + β∞σ 2
0 (8.35)

The first expression on the RHS of (8.35) is simply a constant, and as the

number of observations tends to infinity, β∞ will tend to zero. Hence, the

GARCH(1,1) model can be written as

σ 2
t = γ0 + α1u2

t−1(1 + βL + β2L2 + · · ·) (8.36)

= γ0 + γ1u2
t−1 + γ2u2

t−2 + · · · , (8.37)

which is a restricted infinite order ARCH model. Thus the GARCH(1,1)

model, containing only three parameters in the conditional variance
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equation, is a very parsimonious model, that allows an infinite number

of past squared errors to influence the current conditional variance.

The GARCH(1,1) model can be extended to a GARCH(p,q) formulation,

where the current conditional variance is parameterised to depend upon

q lags of the squared error and p lags of the conditional variance

σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αqu2

t−q + β1σ
2
t−1

+ β2σ
2
t−2 + · · · + βpσ

2
t−p (8.38)

σ 2
t = α0 +

q
∑

i=1

αi u
2
t−i +

p
∑

j=1

β jσ
2
t− j (8.39)

But in general a GARCH(1,1) model will be sufficient to capture the volatil-

ity clustering in the data, and rarely is any higher order model estimated

or even entertained in the academic finance literature.

8.8.1 The unconditional variance under a GARCH specification

The conditional variance is changing, but the unconditional variance of

ut is constant and given by

var(ut ) =
α0

1 − (α1 + β)
(8.40)

so long as α1 + β < 1. For α1 + β ≥ 1, the unconditional variance of ut

is not defined, and this would be termed ‘non-stationarity in variance’.

α1 + β = 1 would be known as a ‘unit root in variance’, also termed ‘In-

tegrated GARCH’ or IGARCH. Non-stationarity in variance does not have a

strong theoretical motivation for its existence, as would be the case for

non-stationarity in the mean (e.g. of a price series). Furthermore, a GARCH

model whose coefficients imply non-stationarity in variance would have

some highly undesirable properties. One illustration of these relates to the

forecasts of variance made from such models. For stationary GARCH mod-

els, conditional variance forecasts converge upon the long-term average

value of the variance as the prediction horizon increases (see below). For

IGARCH processes, this convergence will not happen, while for α1 + β > 1,

the conditional variance forecast will tend to infinity as the forecast hori-

zon increases!

8.9 Estimation of ARCH/GARCH models

Since the model is no longer of the usual linear form, OLS cannot be used

for GARCH model estimation. There are a variety of reasons for this, but

the simplest and most fundamental is that OLS minimises the residual
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Box 8.2 Estimating an ARCH or GARCH model

(1) Specify the appropriate equations for the mean and the variance – e.g. an

AR(1)-GARCH(1,1) model

yt = μ + φyt−1 + ut , ut ∼ N
(

0, σ 2
t

)

(8.41)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.42)

(2) Specify the log-likelihood function (LLF) to maximise under a normality assumption

for the disturbances

L = −
T

2
log(2π ) −

1

2

T
∑

t=1

log
(

σ 2
t

)

−
1

2

T
∑

t=1

(yt − μ − φyt−1)2/σ 2
t (8.43)

(3) The computer will maximise the function and generate parameter values that

maximise the LLF and will construct their standard errors.

sum of squares. The RSS depends only on the parameters in the condi-

tional mean equation, and not the conditional variance, and hence RSS

minimisation is no longer an appropriate objective.

In order to estimate models from the GARCH family, another technique

known as maximum likelihood is employed. Essentially, the method works

by finding the most likely values of the parameters given the actual data.

More specifically, a log-likelihood function is formed and the values of the

parameters that maximise it are sought. Maximum likelihood estimation

can be employed to find parameter values for both linear and non-linear

models. The steps involved in actually estimating an ARCH or GARCH

model are shown in box 8.2.

The following section will elaborate on points 2 and 3 above, explaining

how the LLF is derived.

8.9.1 Parameter estimation using maximum likelihood

As stated above, under maximum likelihood estimation, a set of parame-

ter values are chosen that are most likely to have produced the observed

data. This is done by first forming a likelihood function, denoted LF. LF will

be a multiplicative function of the actual data, which will consequently

be difficult to maximise with respect to the parameters. Therefore, its log-

arithm is taken in order to turn LF into an additive function of the sample

data, i.e. the LLF. A derivation of the maximum likelihood (ML) estimator

in the context of the simple bivariate regression model with homoscedas-

ticity is given in the appendix to this chapter. Essentially, deriving the ML

estimators involves differentiating the LLF with respect to the parameters.

But how does this help in estimating heteroscedastic models? How can the
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method outlined in the appendix for homoscedastic models be modified

for application to GARCH model estimation?

In the context of conditional heteroscedasticity models, the model is

yt = μ + φyt−1 + ut , ut ∼ N(0, σ 2
t ), so that the variance of the errors has

been modified from being assumed constant, σ 2, to being time-varying,

σ 2
t , with the equation for the conditional variance as previously. The LLF

relevant for a GARCH model can be constructed in the same way as for

the homoscedastic case by replacing

T

2
log σ 2

with the equivalent for time-varying variance

1

2

T
∑

t=1

log σ 2
t

and replacing σ 2 in the denominator of the last part of the expression

with σ 2
t (see the appendix to this chapter). Derivation of this result from

first principles is beyond the scope of this text, but the log-likelihood

function for the above model with time-varying conditional variance and

normally distributed errors is given by (8.43) in box 8.2.

Intuitively, maximising the LLF involves jointly minimising

T
∑

t=1

log σ 2
t

and

T
∑

t=1

(yt − μ − φyt−1)2

σ 2
t

(since these terms appear preceded with a negative sign in the LLF, and

−
T

2
log(2π )

is just a constant with respect to the parameters). Minimising these terms

jointly also implies minimising the error variance, as described in chap-

ter 3. Unfortunately, maximising the LLF for a model with time-varying

variances is trickier than in the homoscedastic case. Analytical derivatives

of the LLF in (8.43) with respect to the parameters have been developed,

but only in the context of the simplest examples of GARCH specifications.

Moreover, the resulting formulae are complex, so a numerical procedure

is often used instead to maximise the log-likelihood function.

Essentially, all methods work by ‘searching’ over the parameter-space

until the values of the parameters that maximise the log-likelihood
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A C

B

l(  )

Figure 8.2

The problem of local

optima in maximum

likelihood

estimation

function are found. EViews employs an iterative technique for maximising

the LLF. This means that, given a set of initial guesses for the parameter

estimates, these parameter values are updated at each iteration until the

program determines that an optimum has been reached. If the LLF has

only one maximum with respect to the parameter values, any optimisa-

tion method should be able to find it -- although some methods will take

longer than others. A detailed presentation of the various methods avail-

able is beyond the scope of this book. However, as is often the case with

non-linear models such as GARCH, the LLF can have many local maxima,

so that different algorithms could find different local maxima of the LLF.

Hence readers should be warned that different optimisation procedures

could lead to different coefficient estimates and especially different esti-

mates of the standard errors (see Brooks, Burke and Persand, 2001 or 2003

for details). In such instances, a good set of initial parameter guesses is

essential.

Local optima or multimodalities in the likelihood surface present po-

tentially serious drawbacks with the maximum likelihood approach to

estimating the parameters of a GARCH model, as shown in figure 8.2.

Suppose that the model contains only one parameter, θ , so that the log-

likelihood function is to be maximised with respect to this one parameter.

In figure 8.2, the value of the LLF for each value of θ is denoted l(θ ).

Clearly, l(θ ) reaches a global maximum when θ = C , and a local maximum

when θ = A. This demonstrates the importance of good initial guesses for

the parameters. Any initial guesses to the left of B are likely to lead

to the selection of A rather than C . The situation is likely to be even

worse in practice, since the log-likelihood function will be maximised

with respect to several parameters, rather than one, and there could be
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Box 8.3 Using maximum likelihood estimation in practice

(1) Set up the LLF.

(2) Use regression to get initial estimates for the mean parameters.

(3) Choose some initial guesses for the conditional variance parameters. In most

software packages, the default initial values for the conditional variance

parameters would be zero. This is unfortunate since zero parameter values often

yield a local maximum of the likelihood function. So if possible, set plausible initial

values away from zero.

(4) Specify a convergence criterion – either by criterion or by value. When ‘by criterion’

is selected, the package will continue to search for ‘better’ parameter values that

give a higher value of the LLF until the change in the value of the LLF between

iterations is less than the specified convergence criterion. Choosing ‘by value’ will

lead to the software searching until the change in the coefficient estimates are

small enough. The default convergence criterion for EViews is 0.001, which means

that convergence is achieved and the program will stop searching if the biggest

percentage change in any of the coefficient estimates for the most recent iteration

is smaller than 0.1%.

many local optima. Another possibility that would make optimisation

difficult is when the LLF is flat around the maximum. So, for example, if

the peak corresponding to C in figure 8.2, were flat rather than sharp, a

range of values for θ could lead to very similar values for the LLF, making

it difficult to choose between them.

So, to explain again in more detail, the optimisation is done in the way

shown in box 8.3.

The optimisation methods employed by EViews are based on the deter-

mination of the first and second derivatives of the log-likelihood function

with respect to the parameter values at each iteration, known as the gra-

dient and Hessian (the matrix of second derivatives of the LLF w.r.t the

parameters), respectively. An algorithm for optimisation due to Berndt,

Hall, Hall and Hausman (1974), known as BHHH, is available in EViews.

BHHH employs only first derivatives (calculated numerically rather than

analytically) and approximations to the second derivatives are calculated.

Not calculating the actual Hessian at each iteration at each time step in-

creases computational speed, but the approximation may be poor when

the LLF is a long way from its maximum value, requiring more iterations

to reach the optimum. The Marquardt algorithm, available in EViews, is a

modification of BHHH (both of which are variants on the Gauss--Newton

method) that incorporates a ‘correction’, the effect of which is to push the

coefficient estimates more quickly to their optimal values. All of these op-

timisation methods are described in detail in Press et al. (1992).
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8.9.2 Non-normality and maximum likelihood

Recall that the conditional normality assumption for ut is essential in

specifying the likelihood function. It is possible to test for non-normality

using the following representation

ut = vtσt,vt ∼ N
(

0, 1
)

(8.44)

σt =
√

α0 + α1u2
t−1 + βσ 2

t−1 (8.45)

Note that one would not expect ut to be normally distributed -- it is a

N(0, σ 2
t ) disturbance term from the regression model, which will imply it

is likely to have fat tails. A plausible method to test for normality would

be to construct the statistic

vt =
ut

σt

(8.46)

which would be the model disturbance at each point in time t divided

by the conditional standard deviation at that point in time. Thus, it is

the vt that are assumed to be normally distributed, not ut . The sample

counterpart would be

v̂t =
ût

σ̂t

(8.47)

which is known as a standardised residual. Whether the v̂t are normal can

be examined using any standard normality test, such as the Bera--Jarque.

Typically, v̂t are still found to be leptokurtic, although less so than the ût .

The upshot is that the GARCH model is able to capture some, although not

all, of the leptokurtosis in the unconditional distribution of asset returns.

Is it a problem if v̂t are not normally distributed? Well, the answer is

‘not really’. Even if the conditional normality assumption does not hold,

the parameter estimates will still be consistent if the equations for the

mean and variance are correctly specified. However, in the context of non-

normality, the usual standard error estimates will be inappropriate, and

a different variance--covariance matrix estimator that is robust to non-

normality, due to Bollerslev and Wooldridge (1992), should be used. This

procedure (i.e. maximum likelihood with Bollerslev--Wooldridge standard

errors) is known as quasi-maximum likelihood, or QML.

8.9.3 Estimating GARCH models in EViews

To estimate a GARCH-type model, open the equation specification di-

alog by selecting Quick/Estimate Equation or by selecting Object/New

Object/Equation . . . . Select ARCH from the ‘Estimation Settings’ selection

box. The window in screenshot 8.1 will open.
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Screenshot 8.1

Estimating a

GARCH-type model

It is necessary to specify both the mean and the variance equations, as

well as the estimation technique and sample.

The mean equation

The specification of the mean equation should be entered in the depen-

dent variable edit box. Enter the specification by listing the dependent

variable followed by the regressors. The constant term ‘C’ should also be

included. If your specification includes an ARCH-M term (see later in this

chapter), you should click on the appropriate button in the upper RHS

of the dialog box to select the conditional standard deviation, the condi-

tional variance, or the log of the conditional variance.

The variance equation

The edit box labelled ‘Variance regressors’ is where variables that are to be

included in the variance specification should be listed. Note that EViews

will always include a constant in the conditional variance, so that it is

not necessary to add ‘C’ to the variance regressor list. Similarly, it is not



Modelling volatility and correlation 401

necessary to include the ARCH or GARCH terms in this box as they will be

dealt with in other parts of the dialog box. Instead, enter here any exoge-

nous variables or dummies that you wish to include in the conditional

variance equation, or (as is usually the case), just leave this box blank.

Variance and distribution specification

Under the ‘Variance and distribution Specification’ label, choose the num-

ber of ARCH and GARCH terms. The default is to estimate with one ARCH

and one GARCH term (i.e. one lag of the squared errors and one lag of

the conditional variance, respectively). To estimate the standard GARCH

model, leave the default ‘GARCH/TARCH’. The other entries in this box

describe more complicated variants of the standard GARCH specification,

which are described in later sections of this chapter.

Estimation options

EViews provides a number of optional estimation settings. Clicking on the

Options tab gives the options in screenshot 8.2 to be filled out as required.

Screenshot 8.2

GARCH model

estimation options



402 Introductory Econometrics for Finance

The Heteroskedasticity Consistent Covariance option is used to compute

the quasi-maximum likelihood (QML) covariances and standard errors us-

ing the methods described by Bollerslev and Wooldridge (1992). This op-

tion should be used if you suspect that the residuals are not conditionally

normally distributed. Note that the parameter estimates will be (virtually)

unchanged if this option is selected; only the estimated covariance matrix

will be altered.

The log-likelihood functions for ARCH models are often not well behaved

so that convergence may not be achieved with the default estimation set-

tings. It is possible in EViews to select the iterative algorithm (Marquardt,

BHHH/Gauss Newton), to change starting values, to increase the maximum

number of iterations or to adjust the convergence criteria. For example,

if convergence is not achieved, or implausible parameter estimates are

obtained, it is sensible to re-do the estimation using a different set of

starting values and/or a different optimisation algorithm.

Once the model has been estimated, EViews provides a variety of

pieces of information and procedures for inference and diagnostic check-

ing. For example, the following options are available on the View

button:

● Actual, Fitted, Residual

The residuals are displayed in various forms, such as table, graphs and

standardised residuals.

● GARCH graph

This graph plots the one-step ahead standard deviation, σt , or the con-

ditional variance, σ 2
t for each observation in the sample.

● Covariance Matrix

● Coefficient Tests

● Residual Tests/Correlogram-Q statistics

● Residual Tests/Correlogram Squared Residuals

● Residual Tests/Histogram-Normality Test

● Residual Tests/ARCH LM Test.

ARCH model procedures

These options are all available by pressing the ‘Proc’ button following the

estimation of a GARCH-type model:

● Make Residual Series

● Make GARCH Variance Series

● Forecast.
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Estimating the GARCH(1,1) model for the yen--dollar (‘rjpy’) series using

the instructions as listed above, and the default settings elsewhere would

yield the results:

Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:02

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 10 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)∗RESID(−1)∧2 + C(4)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

C 0.005518 0.009396 0.587333 0.5570

Variance Equation

C 0.001345 0.000526 2.558748 0.0105

RESID(−1)∧2 0.028436 0.004108 6.922465 0.0000

GARCH(−1) 0.964139 0.005528 174.3976 0.0000

R-squared −0.000091 Mean dependent var 0.001328

Adjusted R-squared −0.001738 S.D. dependent var 0.439632

S.E. of regression 0.440014 Akaike info criterion 1.139389

Sum squared resid 352.7611 Schwarz criterion 1.151459

Log likelihood −1036.262 Hannan-Quinn criter. 1.143841

Durbin-Watson stat 1.981759

The coefficients on both the lagged squared residual and lagged con-

ditional variance terms in the conditional variance equation are highly

statistically significant. Also, as is typical of GARCH model estimates for

financial asset returns data, the sum of the coefficients on the lagged

squared error and lagged conditional variance is very close to unity (ap-

proximately 0.99). This implies that shocks to the conditional variance

will be highly persistent. This can be seen by considering the equations

for forecasting future values of the conditional variance using a GARCH

model given in a subsequent section. A large sum of these coefficients

will imply that a large positive or a large negative return will lead future

forecasts of the variance to be high for a protracted period. The individual

conditional variance coefficients are also as one would expect. The vari-

ance intercept term ‘C’ is very small, and the ‘ARCH parameter’ is around
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0.03 while the coefficient on the lagged conditional variance (‘GARCH’) is

larger at 0.96.

8.10 Extensions to the basic GARCH model

Since the GARCH model was developed, a huge number of extensions and

variants have been proposed. A couple of the most important examples

will be highlighted here. Interested readers who wish to investigate further

are directed to a comprehensive survey by Bollerslev et al. (1992).

Many of the extensions to the GARCH model have been suggested as

a consequence of perceived problems with standard GARCH(p, q) mod-

els. First, the non-negativity conditions may be violated by the estimated

model. The only way to avoid this for sure would be to place artifi-

cial constraints on the model coefficients in order to force them to be

non-negative. Second, GARCH models cannot account for leverage effects

(explained below), although they can account for volatility clustering

and leptokurtosis in a series. Finally, the model does not allow for any

direct feedback between the conditional variance and the conditional

mean.

Some of the most widely used and influential modifications to the

model will now be examined. These may remove some of the restrictions

or limitations of the basic model.

8.11 Asymmetric GARCH models

One of the primary restrictions of GARCH models is that they enforce

a symmetric response of volatility to positive and negative shocks. This

arises since the conditional variance in equations such as (8.39) is a func-

tion of the magnitudes of the lagged residuals and not their signs (in

other words, by squaring the lagged error in (8.39), the sign is lost). How-

ever, it has been argued that a negative shock to financial time series is

likely to cause volatility to rise by more than a positive shock of the same

magnitude. In the case of equity returns, such asymmetries are typically

attributed to leverage effects, whereby a fall in the value of a firm’s stock

causes the firm’s debt to equity ratio to rise. This leads shareholders, who

bear the residual risk of the firm, to perceive their future cashflow stream

as being relatively more risky.

An alternative view is provided by the ‘volatility-feedback’ hypothesis.

Assuming constant dividends, if expected returns increase when stock
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price volatility increases, then stock prices should fall when volatility rises.

Although asymmetries in returns series other than equities cannot be

attributed to changing leverage, there is equally no reason to suppose

that such asymmetries only exist in equity returns.

Two popular asymmetric formulations are explained below: the GJR

model, named after the authors Glosten, Jagannathan and Runkle

(1993), and the exponential GARCH (EGARCH) model proposed by Nelson

(1991).

8.12 The GJR model

The GJR model is a simple extension of GARCH with an additional term

added to account for possible asymmetries. The conditional variance is

now given by

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 + γ u2

t−1 It−1 (8.48)

where It−1 = 1 if ut−1 < 0

= 0 otherwise

For a leverage effect, we would see γ > 0. Notice now that the condition

for non-negativity will be α0 > 0, α1 > 0, β ≥ 0, and α1 + γ ≥ 0. That is,

the model is still admissible, even if γ < 0, provided that α1 + γ ≥ 0.

Example 8.1

To offer an illustration of the GJR approach, using monthly S&P500 re-

turns from December 1979 until June 1998, the following results would

be obtained, with t -ratios in parentheses

yt = 0.172 (8.49)

(3.198)

σ 2
t = 1.243 + 0.015u2

t−1 + 0.498σ 2
t−1 + 0.604u2

t−1 It−1 (8.50)

(16.372) (0.437) (14.999) (5.772)

Note that the asymmetry term, γ , has the correct sign and is significant. To

see how volatility rises more after a large negative shock than a large posi-

tive one, suppose that σ 2
t−1 = 0.823, and consider ût−1 = ±0.5. If ût−1 = 0.5,

this implies that σ 2
t = 1.65. However, a shock of the same magnitude but

of opposite sign, ût−1 = −0.5, implies that the fitted conditional variance

for time t will be σ 2
t = 1.80.
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8.13 The EGARCH model

The exponential GARCH model was proposed by Nelson (1991). There are

various ways to express the conditional variance equation, but one possi-

ble specification is given by

ln
(

σ 2
t

)

= ω + β ln
(

σ 2
t−1

)

+ γ
ut−1

√

σ 2
t−1

+ α

⎡

⎣

|ut−1|
√

σ 2
t−1

−
√

2

π

⎤

⎦ (8.51)

The model has several advantages over the pure GARCH specification. First,

since the log(σ 2
t ) is modelled, then even if the parameters are negative, σ 2

t

will be positive. There is thus no need to artificially impose non-negativity

constraints on the model parameters. Second, asymmetries are allowed for

under the EGARCH formulation, since if the relationship between volatil-

ity and returns is negative, γ , will be negative.

Note that in the original formulation, Nelson assumed a Generalised

Error Distribution (GED) structure for the errors. GED is a very broad

family of distributions that can be used for many types of series. However,

owing to its computational ease and intuitive interpretation, almost all

applications of EGARCH employ conditionally normal errors as discussed

above rather than using GED.

8.14 GJR and EGARCH in EViews

The main menu screen for GARCH estimation demonstrates that a num-

ber of variants on the standard GARCH model are available. Arguably most

important of these are asymmetric models, such as the TGARCH (‘thresh-

old’ GARCH), which is also known as the GJR model, and the EGARCH

model. To estimate a GJR model in EViews, from the GARCH model equa-

tion specification screen (screenshot 8.1 above), change the ‘Threshold

Order’ number from 0 to 1. To estimate an EGARCH model, change the

‘GARCH/TARCH’ model estimation default to ‘EGARCH’.

Coefficient estimates for each of these specifications using the daily

Japanese yen--US dollar returns data are given in the next two out-

put tables, respectively. For both specifications, the asymmetry terms

(‘(RESID<0)∗ ARCH(1)’ in the GJR model and ‘RESID(−1)/@SQRT(GARCH

(−1))’) are not statistically significant (although it is almost significant

in the case of the EGARCH model). Also in both cases, the coefficient

estimates are negative, suggesting that positive shocks imply a higher

next period conditional variance than negative shocks of the same sign.



Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:20

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 9 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)∗RESID(−1)∧2 + C(4)∗RESID(−1)∧2∗(RESID(−1)<0)

+ C(5)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

C 0.005588 0.009602 0.581934 0.5606

Variance Equation

C 0.001361 0.000544 2.503534 0.0123

RESID(−1)∧2 0.029036 0.005373 5.404209 0.0000

RESID(−1)∧2∗(RESID(-1)<0) −0.001027 0.006140 −0.167301 0.8671

GARCH(−1) 0.963989 0.005644 170.7852 0.0000

R-squared −0.000094 Mean dependent var 0.001328

Adjusted R-squared −0.002291 S.D. dependent var 0.439632

S.E. of regression 0.440135 Akaike info criterion 1.140477

Sum squared resid 352.7622 Schwarz criterion 1.155564

Log likelihood −1036.256 Hannan-Quinn criter. 1.146042

Durbin-Watson stat 1.981753

Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:18

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 12 iterations

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(2) + C(3)∗ABS(RESID(−1)/ SQRT(GARCH(−1)))

+ C(4)∗RESID(−1)/ SQRT(GARCH(−1)) + C(5)∗LOG(GARCH(−1))

Coefficient Std. Error z-Statistic Prob.

C 0.003756 0.010025 0.374722 0.7079

Variance Equation

C(2) −1.262782 0.194243 −6.501047 0.0000

C(3) 0.214215 0.034226 6.258919 0.0000

C(4) −0.046461 0.024983 −1.859751 0.0629

C(5) 0.329164 0.112572 2.924037 0.0035

R-squared −0.000031 Mean dependent var 0.001328

Adjusted R-squared −0.002227 S.D. dependent var 0.439632

S.E. of regression 0.440121 Akaike info criterion 1.183216

Sum squared resid 352.7398 Schwarz criterion 1.198303

Log likelihood −1075.276 Hannan-Quinn criter. 1.188781

Durbin-Watson stat 1.981879
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This is the opposite to what would have been expected in the case of the

application of a GARCH model to a set of stock returns. But arguably,

neither the leverage effect or volatility feedback explanations for asymmetries

in the context of stocks apply here. For a positive return shock, this implies

more yen per dollar and therefore a strengthening dollar and a weakening

yen. Thus the results suggest that a strengthening dollar (weakening yen)

leads to higher next period volatility than when the yen strengthens by

the same amount.

8.15 Tests for asymmetries in volatility

Engle and Ng (1993) have proposed a set of tests for asymmetry in volatility,

known as sign and size bias tests. The Engle and Ng tests should thus be

used to determine whether an asymmetric model is required for a given

series, or whether the symmetric GARCH model can be deemed adequate.

In practice, the Engle--Ng tests are usually applied to the residuals of a

GARCH fit to the returns data. Define S−
t−1 as an indicator dummy that

takes the value 1 if ût−1 < 0 and zero otherwise. The test for sign bias is

based on the significance or otherwise of φ1 in

û2
t = φ0 + φ1S−

t−1 + υt (8.52)

where υt is an iid error term. If positive and negative shocks to ût−1 im-

pact differently upon the conditional variance, then φ1 will be statistically

significant.

It could also be the case that the magnitude or size of the shock will

affect whether the response of volatility to shocks is symmetric or not.

In this case, a negative size bias test would be conducted, based on a

regression where S−
t−1 is now used as a slope dummy variable. Negative

size bias is argued to be present if φ1 is statistically significant in the

regression

û2
t = φ0 + φ1S−

t−1ut−1 + υt (8.53)

Finally, defining S+
t−1 = 1 − S−

t−1, so that S+
t−1 picks out the observations

with positive innovations, Engle and Ng propose a joint test for sign and

size bias based on the regression

û2
t = φ0 + φ1S−

t−1 + φ2S−
t−1ut−1 + φ3S+

t−1ut−1 + υt (8.54)

Significance of φ1 indicates the presence of sign bias, where positive

and negative shocks have differing impacts upon future volatility, com-

pared with the symmetric response required by the standard GARCH
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formulation. On the other hand, the significance of φ2 or φ3 would suggest

the presence of size bias, where not only the sign but the magnitude of

the shock is important. A joint test statistic is formulated in the standard

fashion by calculating TR2 from regression (8.54), which will asymptoti-

cally follow a χ2 distribution with 3 degrees of freedom under the null

hypothesis of no asymmetric effects.

8.15.1 News impact curves

A pictorial representation of the degree of asymmetry of volatility to pos-

itive and negative shocks is given by the news impact curve introduced

by Pagan and Schwert (1990). The news impact curve plots the next-period

volatility (σ 2
t ) that would arise from various positive and negative values

of ut−1, given an estimated model. The curves are drawn by using the esti-

mated conditional variance equation for the model under consideration,

with its given coefficient estimates, and with the lagged conditional vari-

ance set to the unconditional variance. Then, successive values of ut−1 are

used in the equation to determine what the corresponding values of σ 2
t

derived from the model would be. For example, consider the GARCH and

GJR model estimates given above for the S&P500 data from EViews. Values

of ut−1 in the range (−1, +1) are substituted into the equations in each

case to investigate the impact on the conditional variance during the next

period. The resulting news impact curves for the GARCH and GJR models

are given in figure 8.3.

As can be seen from figure 8.3, the GARCH news impact curve (the

grey line) is of course symmetrical about zero, so that a shock of given

magnitude will have the same impact on the future conditional variance

whatever its sign. On the other hand, the GJR news impact curve (the black

line) is asymmetric, with negative shocks having more impact on future

volatility than positive shocks of the same magnitude. It can also be seen

that a negative shock of given magnitude will have a bigger impact under

GJR than would be implied by a GARCH model, while a positive shock of

given magnitude will have more impact under GARCH than GJR. The latter

result arises as a result of the reduction in the value of α1, the coefficient

on the lagged squared error, when the asymmetry term is included in the

model.

8.16 GARCH-in-mean

Most models used in finance suppose that investors should be rewarded

for taking additional risk by obtaining a higher return. One way to
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operationalise this concept is to let the return of a security be partly

determined by its risk. Engle, Lilien and Robins (1987) suggested an

ARCH-M specification, where the conditional variance of asset returns en-

ters into the conditional mean equation. Since GARCH models are now

considerably more popular than ARCH, it is more common to estimate

a GARCH-M model. An example of a GARCH-M model is given by the

specification

yt = μ + δσt−1 + ut , ut ∼ N
(

0, σ 2
t

)

(8.55)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.56)

If δ is positive and statistically significant, then increased risk, given

by an increase in the conditional variance, leads to a rise in the mean

return. Thus δ can be interpreted as a risk premium. In some empiri-

cal applications, the conditional variance term, σ 2
t−1, appears directly in

the conditional mean equation, rather than in square root form, σt−1.

Also, in some applications the term is contemporaneous, σ 2
t , rather than

lagged.

8.16.1 GARCH-M estimation in EViews

The GARCH-M model with the conditional standard deviation term in the

mean, estimated using the rjpy data in EViews from the main GARCH

menu as described above, would give the following results:
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Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:58

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 18 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)∗RESID(−1)∧2 + C(5)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

SQRT(GARCH) −0.068943 0.124958 −0.551729 0.5811

C 0.033279 0.051802 0.642436 0.5206

Variance Equation

C 0.001373 0.000529 2.594929 0.0095

RESID(−1)∧2 0.028886 0.004150 6.960374 0.0000

GARCH(−1) 0.963568 0.005580 172.6828 0.0000

R-squared 0.000034 Mean dependent var 0.001328

Adjusted R-squared −0.002162 S.D. dependent var 0.439632

S.E. of regression 0.440107 Akaike info criterion 1.140302

Sum squared resid 352.7170 Schwarz criterion 1.155390

Log likelihood −1036.096 Hannan-Quinn criter. 1.145867

F-statistic 0.015541 Durbin-Watson stat 1.982106

Prob(F-statistic) 0.999526

In this case, the estimated parameter on the mean equation has a neg-

ative sign but is not statistically significant. We would thus conclude that

for these currency returns, there is no feedback from the conditional vari-

ance to the conditional mean.

8.17 Uses of GARCH-type models including volatility forecasting

Essentially GARCH models are useful because they can be used to model

the volatility of a series over time. It is possible to combine together more

than one of the time series models that have been considered so far in

this book, to obtain more complex ‘hybrid’ models. Such models can ac-

count for a number of important features of financial series at the same

time -- e.g. an ARMA--EGARCH(1,1)-M model; the potential complexity of

the model is limited only by the imagination!

GARCH-type models can be used to forecast volatility. GARCH is a model

to describe movements in the conditional variance of an error term,
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ut , which may not appear particularly useful. But it is possible to show

that

var (yt | yt−1, yt−2, . . .) = var (ut | ut−1, ut−2, . . .) (8.57)

So the conditional variance of y, given its previous values, is the same as

the conditional variance of u, given its previous values. Hence, modelling

σ 2
t will give models and forecasts for the variance of yt as well. Thus, if

the dependent variable in a regression, yt is an asset return series, fore-

casts of σ 2
t will be forecasts of the future variance of yt . So one primary

usage of GARCH-type models is in forecasting volatility. This can be use-

ful in, for example, the pricing of financial options where volatility is an

input to the pricing model. For example, the value of a ‘plain vanilla’ call

option is a function of the current value of the underlying, the strike

price, the time to maturity, the risk free interest rate and volatility. The

required volatility, to obtain an appropriate options price, is really the

volatility of the underlying asset expected over the lifetime of the option.

As stated previously, it is possible to use a simple historical average mea-

sure as the forecast of future volatility, but another method that seems

more appropriate would be to use a time series model such as GARCH to

compute the volatility forecasts. The forecasting ability of various mod-

els is considered in a paper by Day and Lewis (1992), discussed in detail

below.

Producing forecasts from models of the GARCH class is relatively simple,

and the algebra involved is very similar to that required to obtain forecasts

from ARMA models. An illustration is given by example 8.2.

Example 8.2

Consider the following GARCH(1,1) model

yt = μ + ut , ut ∼ N(0, σ 2
t ) (8.58)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.59)

Suppose that the researcher had estimated the above GARCH model for

a series of returns on a stock index and obtained the following param-

eter estimates: μ̂ = 0.0023, α̂0 = 0.0172, β̂ = 0.7811, α̂1 = 0.1251. If the

researcher has data available up to and including time T , write down

a set of equations in σ 2
t and u2

t and their lagged values, which could

be employed to produce one-, two-, and three-step-ahead forecasts for the

conditional variance of yt .

What is needed is to generate forecasts of σT +1
2|�T , σT +2

2|�T , . . . ,

σT +s
2|�T where �T denotes all information available up to and including
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observation T . For time T , the conditional variance equation is given by

(8.59). Adding one to each of the time subscripts of this equation, and

then two, and then three would yield equations (8.60)--(8.62)

σT +1
2 = α0 + α1u2

T + βσ 2
T (8.60)

σT +2
2 = α0 + α1u2

T +1 + βσ 2
T +1 (8.61)

σT +3
2 = α0 + α1u2

T +2 + βσ 2
T +2 (8.62)

Let σ
f 2

1,T be the one-step-ahead forecast for σ 2 made at time T . This is easy

to calculate since, at time T , the values of all the terms on the RHS are

known. σ
f 2

1,T would be obtained by taking the conditional expectation of

(8.60).

Given σ
f 2

1,T , how is σ
f 2

2,T , the two-step-ahead forecast for σ 2 made at time

T , calculated?

σ
f 2

1,T = α0 + α1u2
T + βσ 2

T (8.63)

From (8.61), it is possible to write

σ
f 2

2,T = α0 + α1E(u2
T +1 | �T ) + βσ

f 2

1,T (8.64)

where E(u2
T +1 | �T ) is the expectation, made at time T , of u2

T +1, which is

the squared disturbance term. It is necessary to find E(u2
T +1 | �T ), using the

expression for the variance of a random variable ut . The model assumes

that the series ut has zero mean, so that the variance can be written

var (ut ) = E[(ut − E(ut ))
2] = E

(

u2
t

)

. (8.65)

The conditional variance of ut is σ 2
t , so

σ 2
t | �t = E(ut )

2 (8.66)

Turning this argument around, and applying it to the problem at hand

E(uT +1 | �t )
2 = σ 2

T +1 (8.67)

but σ 2
T +1 is not known at time T , so it is replaced with the forecast for it,

σ
f 2

1,T , so that (8.64) becomes

σ
f 2

2,T = α0 + α1σ
f 2

1,T + βσ
f 2

1,T (8.68)

σ
f 2

2,T = α0 + (α1 + β)σ
f 2

1,T (8.69)

What about the three-step-ahead forecast?
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By similar arguments,

σ
f 2

3,T = ET

(

α0 + α1u2
T +2 + βσ 2

T +2

)

(8.70)

σ
f 2

3,T = α0 + (α1 + β)σ
f 2

2,T (8.71)

σ
f 2

3,T = α0 + (α1 + β)
[

α0 + (α1 + β)σ
f 2

1,T

]

(8.72)

σ
f 2

3,T = α0 + α0(α1 + β) + (α1 + β)2σ
f 2

1,T (8.73)

Any s-step-ahead forecasts would be produced by

σ
f 2

s,T = α0

s−1
∑

i=1

(α1 + β)i−1 + (α1 + β)s−1σ
f 2

1,T (8.74)

for any value of s ≥ 2.

It is worth noting at this point that variances, and therefore variance

forecasts, are additive over time. This is a very useful property. Suppose,

for example, that using daily foreign exchange returns, one-, two-, three-,

four-, and five-step-ahead variance forecasts have been produced, i.e. a

forecast has been constructed for each day of the next trading week.

The forecasted variance for the whole week would simply be the sum of

the five daily variance forecasts. If the standard deviation is the required

volatility estimate rather than the variance, simply take the square root

of the variance forecasts. Note also, however, that standard deviations are

not additive. Hence, if daily standard deviations are the required volatil-

ity measure, they must be squared to turn them to variances. Then the

variances would be added and the square root taken to obtain a weekly

standard deviation.

8.17.1 Forecasting from GARCH models with EViews

Forecasts from any of the GARCH models that can be estimated using

EViews are obtained by using only a sub-sample of available data for model

estimation, and then by clicking on the ‘Forecast’ button that appears

after the estimation of the required model has been completed. Suppose,

for example, we stopped the estimation of the GARCH(1,1) model for the

Japanese yen returns on 6 July 2005 so as to keep the last two years of data

for forecasting (i.e. the ‘Forecast sample’ is 7/07/2005 7/07/2007. Then click

Proc/Forecast . . . and the dialog box in screenshot 8.3 will then appear.

Again, several options are available, including providing a name for the

conditional mean and for the conditional variance forecasts, or whether to

produce static (a series of rolling single-step-ahead) or dynamic (multiple-

step-ahead) forecasts. The dynamic and static forecast plots that would be

produced are given in screenshots 8.4 and 8.5.



Screenshot 8.3

Forecasting from

GARCH models

Screenshot 8.4

Dynamic forecasts

of the conditional

variance
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Screenshot 8.5

Static forecasts of

the conditional

variance

GARCH(1,1) Dynamic forecasts (2 years ahead)

The dynamic forecasts show a completely flat forecast structure for the

mean (since the conditional mean equation includes only a constant

term), while at the end of the in-sample estimation period, the value

of the conditional variance was at a historically low level relative to

its unconditional average. Therefore, the forecasts converge upon their

long-term mean value from below as the forecast horizon increases. No-

tice also that there are no ±2-standard error band confidence intervals

for the conditional variance forecasts; to compute these would require

some kind of estimate of the variance of variance, which is beyond the

scope of this book (and beyond the capability of the built-in functions

of the EViews software). The conditional variance forecasts provide the

basis for the standard error bands that are given by the dotted red lines

around the conditional mean forecast. Because the conditional variance

forecasts rise gradually as the forecast horizon increases, so the standard

error bands widen slightly. The forecast evaluation statistics that are pre-

sented in the box to the right of the graphs are for the conditional mean

forecasts.
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GARCH(1,1) Static forecasts (1 month ahead – 22 days)

It is evident that the variance forecasts gradually fall over the out-of-

sample period, although since these are a series of rolling one-step ahead

forecasts for the conditional variance, they show much more volatility

than for the dynamic forecasts. This volatility also results in more vari-

ability in the standard error bars around the conditional mean forecasts.

Predictions can be similarly produced for any member of the GARCH

family that is estimable with the software.

8.18 Testing non-linear restrictions or testing hypotheses about
non-linear models

The usual t- and F-tests are still valid in the context of non-linear mod-

els, but they are not flexible enough. For example, suppose that it is of

interest to test a hypothesis that α1β = 1. Now that the model class has

been extended to non-linear models, there is no reason to suppose that

relevant restrictions are only linear.

Under OLS estimation, the F-test procedure works by examining the de-

gree to which the RSS rises when the restrictions are imposed. In very

general terms, hypothesis testing under ML works in a similar fashion --

that is, the procedure works by examining the degree to which the maxi-

mal value of the LLF falls upon imposing the restriction. If the LLF falls ‘a

lot’, it would be concluded that the restrictions are not supported by the

data and thus the hypothesis should be rejected.

There are three hypothesis testing procedures based on maximum like-

lihood principles: Wald, Likelihood ratio and Lagrange Multiplier. To illus-

trate briefly how each of these operates, consider a single parameter, θ to

be estimated, and denote the ML estimate as θ̂ and a restricted estimate

as θ̃ . Denoting the maximised value of the LLF by unconstrained ML as

L(θ̂ ) and the constrained optimum as L(θ̃ ), the three testing procedures

can be illustrated as in figure 8.4.

The tests all require the measurement of the ‘distance’ between the

points A (representing the unconstrained maximised value of the log like-

lihood function) and B (representing the constrained value). The vertical

distance forms the basis of the LR test. Twice this vertical distance is given

by 2[L(θ̂ ) − L(θ̃ )] = 2ln[l(θ̂ )/l(θ̃ )], where L denotes the log-likelihood func-

tion, and l denotes the likelihood function. The Wald test is based on

the horizontal distance between θ̂ and θ̃ , while the LM test compares the

slopes of the curve at A and B. At A, the unrestricted maximum of the log-

likelihood function, the slope of the curve is zero. But is it ‘significantly



418 Introductory Econometrics for Finance

B

A

L(  )

L(  )ˆ

L(  )˜

˜ ˆ

Figure 8.4

Three approaches to

hypothesis testing

under maximum

likelihood

steep’ at L(θ̃ ), i.e. at point B ? The steeper the curve is at B, the less likely

the restriction is to be supported by the data.

Expressions for LM test statistics involve the first and second derivatives

of the log-likelihood function with respect to the parameters at the con-

strained estimate. The first derivatives of the log-likelihood function are

collectively known as the score vector, measuring the slope of the LLF for

each possible value of the parameters. The expected values of the second

derivatives comprise the information matrix, measuring the peakedness

of the LLF, and how much higher the LLF value is at the optimum than in

other places. This matrix of second derivatives is also used to construct

the coefficient standard errors. The LM test involves estimating only a re-

stricted regression, since the slope of the LLF at the maximum will be zero

by definition. Since the restricted regression is usually easier to estimate

than the unrestricted case, LM tests are usually the easiest of the three

procedures to employ in practice. The reason that restricted regressions

are usually simpler is that imposing the restrictions often means that

some components in the model will be set to zero or combined under the

null hypothesis, so that there are fewer parameters to estimate. The Wald

test involves estimating only an unrestricted regression, and the usual OLS

t-tests and F-tests are examples of Wald tests (since again, only unrestricted

estimation occurs).

Of the three approaches to hypothesis testing in the maximum-

likelihood framework, the likelihood ratio test is the most intuitively ap-

pealing, and therefore a deeper examination of it will be the subject of

the following section; see Ghosh (1991, section 10.3) for further details.
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8.18.1 Likelihood ratio tests

Likelihood ratio (LR) tests involve estimation under the null hypothesis and

under the alternative, so that two models are estimated: an unrestricted

model and a model where the restrictions have been imposed. The max-

imised values of the LLF for the restricted and unrestricted cases are ‘com-

pared’. Suppose that the unconstrained model has been estimated and that

a given maximised value of the LLF, denoted Lu , has been achieved. Sup-

pose also that the model has been estimated imposing the constraint(s)

and a new value of the LLF obtained, denoted Lr . The LR test statistic

asymptotically follows a Chi-squared distribution and is given by

LR = −2(Lr − Lu) ∼ χ2(m) (8.75)

where m = number of restrictions. Note that the maximised value of the

log-likelihood function will always be at least as big for the unrestricted

model as for the restricted model, so that Lr ≤ Lu . This rule is intuitive

and comparable to the effect of imposing a restriction on a linear model

estimated by OLS, that RRSS ≥ URSS. Similarly, the equality between Lr

and Lu will hold only when the restriction was already present in the

data. Note, however, that the usual F -test is in fact a Wald test, and not a

LR test -- that is, it can be calculated using an unrestricted model only. The

F-test approach based on comparing RSS arises conveniently as a result of

the OLS algebra.

Example 8.3

A GARCH model is estimated and a maximised LLF of 66.85 is obtained.

Suppose that a researcher wishes to test whether β = 0 in (8.77)

yt = μ + φyt−1 + ut , ut ∼ N
(

0, σ 2
t

)

(8.76)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.77)

The model is estimated imposing the restriction and the maximised LLF

falls to 64.54. Is the restriction supported by the data, which would corre-

spond to the situation where an ARCH(1) specification was sufficient? The

test statistic is given by

LR = −2(64.54 − 66.85) = 4.62 (8.78)

The test follows a χ2(1) = 3.84 at 5%, so that the null is marginally rejected.

It would thus be concluded that an ARCH(1) model, with no lag of the

conditional variance in the variance equation, is not quite sufficient to

describe the dependence in volatility over time.
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8.19 Volatility forecasting: some examples and results
from the literature

There is a vast and relatively new literature that attempts to compare

the accuracies of various models for producing out-of-sample volatility

forecasts. Akgiray (1989), for example, finds the GARCH model superior to

ARCH, exponentially weighted moving average and historical mean models

for forecasting monthly US stock index volatility. A similar result concern-

ing the apparent superiority of GARCH is observed by West and Cho (1995)

using one-step-ahead forecasts of dollar exchange rate volatility, although

for longer horizons, the model behaves no better than their alternatives.

Pagan and Schwert (1990) compare GARCH, EGARCH, Markov switching

regime and three non-parametric models for forecasting monthly US stock

return volatilities. The EGARCH followed by the GARCH models perform

moderately; the remaining models produce very poor predictions. Franses

and van Dijk (1996) compare three members of the GARCH family (stan-

dard GARCH, QGARCH and the GJR model) for forecasting the weekly

volatility of various European stock market indices. They find that the

non-linear GARCH models were unable to beat the standard GARCH model.

Finally, Brailsford and Faff (1996) find GJR and GARCH models slightly su-

perior to various simpler models for predicting Australian monthly stock

index volatility. The conclusion arising from this growing body of research

is that forecasting volatility is a ‘notoriously difficult task’ (Brailsford and

Faff, 1996, p. 419), although it appears that conditional heteroscedastic-

ity models are among the best that are currently available. In particular,

more complex non-linear and non-parametric models are inferior in pre-

diction to simpler models, a result echoed in an earlier paper by Dimson

and Marsh (1990) in the context of relatively complex versus parsimonious

linear models. Finally, Brooks (1998), considers whether measures of mar-

ket volume can assist in improving volatility forecast accuracy, finding

that they cannot.

A particularly clear example of the style and content of this class of re-

search is given by Day and Lewis (1992). The Day and Lewis study will there-

fore now be examined in depth. The purpose of their paper is to consider

the out-of-sample forecasting performance of GARCH and EGARCH models

for predicting stock index volatility. The forecasts from these economet-

ric models are compared with those given from an ‘implied volatility’.

As discussed above, implied volatility is the market’s expectation of the

‘average’ level of volatility of an underlying asset over the life of the op-

tion that is implied by the current traded price of the option. Given an

assumed model for pricing options, such as the Black--Scholes, all of the
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inputs to the model except for volatility can be observed directly from

the market or are specified in the terms of the option contract. Thus, it is

possible, using an iterative search procedure such as the Newton--Raphson

method (see, for example, Watsham and Parramore, 2004), to ‘back out’

the volatility of the underlying asset from the option’s price. An impor-

tant question for research is whether implied or econometric models pro-

duce more accurate forecasts of the volatility of the underlying asset. If

the options and underlying asset markets are informationally efficient,

econometric volatility forecasting models based on past realised values of

underlying volatility should have no incremental explanatory power for

future values of volatility of the underlying asset. On the other hand, if

econometric models do hold additional information useful for forecasting

future volatility, it is possible that such forecasts could be turned into a

profitable trading rule.

The data employed by Day and Lewis comprise weekly closing prices

(Wednesday to Wednesday, and Friday to Friday) for the S&P100 Index op-

tion and the underlying index from 11 March 1983--31 December 1989.

They employ both mid-week to mid-week returns and Friday to Friday re-

turns to determine whether weekend effects have any significant impact

on the latter. They argue that Friday returns contain expiration effects

since implied volatilities are seen to jump on the Friday of the week of ex-

piration. This issue is not of direct interest to this book, and consequently

only the mid-week to mid-week results will be shown here.

The models that Day and Lewis employ are as follows. First, for the

conditional mean of the time series models, they employ a GARCH-M

specification for the excess of the market return over a risk-free proxy

RMt − RFt = λ0 + λ1

√

ht + ut (8.79)

where RMt denotes the return on the market portfolio, and RFt denotes

the risk-free rate. Note that Day and Lewis denote the conditional variance

by h2
t , while this is modified to the standard ht here. Also, the notation σ 2

t

will be used to denote implied volatility estimates. For the variance, two

specifications are employed: a ‘plain vanilla’ GARCH(1,1) and an EGARCH

ht = α0 + α1u2
t−1 + β1ht−1 (8.80)

or

ln(ht ) = α0 + β1 ln(ht−1) + α1

(

θ
ut−1

√

ht−1

+ γ

[
∣

∣

∣

∣

∣

ut−1
√

ht−1

∣

∣

∣

∣

∣

−
(

2

π

)1/2
])

(8.81)
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One way to test whether implied or GARCH-type volatility models perform

best is to add a lagged value of the implied volatility estimate (σ 2
t−1) to

(8.80) and (8.81). A ‘hybrid’ or ‘encompassing’ specification would thus

result. Equation (8.80) becomes

ht = α0 + α1u2
t−1 + β1ht−1 + δσ 2

t−1 (8.82)

and (8.81) becomes

ln(ht ) = α0 + β1 ln(ht−1)

+ α1

(

θ
ut−1√
ht−1

+ γ

[

∣

∣

∣

∣

ut−1√
ht−1

∣

∣

∣

∣

−
(

2

π

)1/2
])

+ δ ln
(

σ 2
t−1

)

(8.83)

The tests of interest are given by H0 : δ = 0 in (8.82) or (8.83). If these

null hypotheses cannot be rejected, the conclusion would be that im-

plied volatility contains no incremental information useful for explaining

volatility than that derived from a GARCH model. At the same time, H0:

α1 = 0 and β1 = 0 in (8.82), and H0 : α1 = 0 and β1 = 0 and θ = 0 and

γ = 0 in (8.83) are also tested. If this second set of restrictions holds, then

(8.82) and (8.83) collapse to

ht = α0 + δσ 2
t−1 (8.82′)

and

ln
(

ht

)

= α0 + δ ln
(

σ 2
t−1

)

(8.83′)

These sets of restrictions on (8.82) and (8.83) test whether the lagged

squared error and lagged conditional variance from a GARCH model con-

tain any additional explanatory power once implied volatility is included

in the specification. All of these restrictions can be tested fairly easily

using a likelihood ratio test. The results of such a test are presented in

table 8.1.

It appears from the coefficient estimates and their standard errors un-

der the specification (8.82) that the implied volatility term (δ) is statistically

significant, while the GARCH terms (α1 and β1) are not. However, the test

statistics given in the final column are both greater than their correspond-

ing χ2 critical values, indicating that both GARCH and implied volatility

have incremental power for modelling the underlying stock volatility. A

similar analysis is undertaken in Day and Lewis that compares EGARCH

with implied volatility. The results are presented here in table 8.2.

The EGARCH results tell a very similar story to those of the GARCH spec-

ifications. Neither the lagged information from the EGARCH specification

nor the lagged implied volatility terms can be suppressed, according to the
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Table 8.1 GARCH versus implied volatility

RMt − RFt = λ0 + λ1

√
ht + ut (8.79)

ht = α0 + α1u2
t−1 + β1ht−1 (8.80)

ht = α0 + α1u2
t−1 + β1ht−1 + δσ 2

t−1 (8.82)

ht = α0 + δσ 2
t−1 (8.82′)

Equation for

variance λ0 λ1 α0 × 10−4 α1 β1 δ Log-L χ2

(8.80) 0.0072 0.071 5.428 0.093 0.854 − 767.321 17.77

(0.005) (0.01) (1.65) (0.84) (8.17)

(8.82) 0.0015 0.043 2.065 0.266 −0.068 0.318 776.204 −
(0.028) (0.02) (2.98) (1.17) (−0.59) (3.00)

(8.82′) 0.0056 −0.184 0.993 − − 0.581 764.394 23.62

(0.001) (−0.001) (1.50) (2.94)

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the log-

likelihood function in each case. χ2 denotes the value of the test statistic,

which follows a χ 2(1) in the case of (8.82) restricted to (8.80), and a χ2(2) in the case

of (8.82) restricted to (8.82′).

Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.

Table 8.2 EGARCH versus implied volatility

RMt − RFt = λ0 + λ1

√
ht + ut (8.79)

ln(ht ) = α0 + β1 ln(ht−1) + α1

(

θ
ut−1√
ht−1

+ γ

[

∣

∣

∣

∣

ut−1√
ht−1

∣

∣

∣

∣

−
(

2

π

)1/2
])

(8.81)

ln(ht ) = α0 + β1 ln(ht−1) + α1

(

θ
ut−1√
ht−1

+ γ

[

∣

∣

∣

∣

ut−1√
ht−1

∣

∣

∣

∣

−
(

2

π

)1/2
])

+ δ ln
(

σ 2
t−1

)

(8.83)

ln(ht ) = α0 + δ ln
(

σ 2
t−1

)

(8.83′)

Equation for

variance λ0 λ1 α0 × 10−4 β1 θ γ δ Log-L χ2

(8.81) −0.0026 0.094 −3.62 0.529 0.273 0.357 − 776.436 8.09

(−0.03) (0.25) (−2.90) (3.26) (−4.13) (3.17)

(8.83) 0.0035 −0.076 −2.28 0.373 −0.282 0.210 0.351 780.480 −
(0.56) (−0.24) (−1.82) (1.48) (−4.34) (1.89) (1.82)

(8.83′) 0.0047 −0.139 −2.76 − − − 0.667 765.034 30.89

(0.71) (−0.43) (−2.30) (4.01)

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the log-

likelihood function in each case. χ2 denotes the value of the test statistic, which

follows a χ2(1) in the case of (8.83) restricted to (8.81), and a χ2(3) in the case of

(8.83) restricted to (8.83′).

Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.



424 Introductory Econometrics for Finance

likelihood ratio statistics. In specification (8.83), both the EGARCH terms

and the implied volatility coefficients are marginally significant.

However, the tests given above do not represent a true test of the pre-

dictive ability of the models, since all of the observations were used in

both estimating and testing the models. Hence the authors proceed to

conduct an out-of-sample forecasting test. There are a total of 729 data

points in their sample. They use the first 410 to estimate the models, and

then make a one-step-ahead forecast of the following week’s volatility. They

then roll the sample forward one observation at a time, constructing a

new one-step-ahead forecast at each stage.

They evaluate the forecasts in two ways. The first is by regressing the

realised volatility series on the forecasts plus a constant

σ 2
t+1 = b0 + b1σ

2
f t + ξt+1 (8.84)

where σ 2
t+1 is the ‘actual’ value of volatility at time t + 1, and σ 2

f t is the

value forecasted for it during period t . Perfectly accurate forecasts would

imply b0 = 0 and b1 = 1. The second method is via a set of forecast encom-

passing tests. Essentially, these operate by regressing the realised volatility

on the forecasts generated by several models. The forecast series that have

significant coefficients are concluded to encompass those of models whose

coefficients are not significant.

But what is volatility? In other words, with what measure of realised or

‘ex post’ volatility should the forecasts be compared? This is a question that

received very little attention in the literature until recently. A common

method employed is to assume, for a daily volatility forecasting exercise,

that the relevant ex post measure is the square of that day’s return. For

any random variable rt , its conditional variance can be expressed as

var(rt ) = E[rt − E(rt )]
2 (8.85)

As stated previously, it is typical, and not unreasonable for relatively high

frequency data, to assume that E(rt ) is zero, so that the expression for the

variance reduces to

var(rt ) = E
[

r2
t

]

(8.86)

Andersen and Bollerslev (1998) argue that squared daily returns provide

a very noisy proxy for the true volatility, and a much better proxy for

the day’s variance would be to compute the volatility for the day from

intra-daily data. For example, a superior daily variance measure could

be obtained by taking hourly returns, squaring them and adding them

up. The reason that the use of higher frequency data provides a better

measure of ex post volatility is simply that it employs more information.
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By using only daily data to compute a daily volatility measure, effectively

only two observations on the underlying price series are employed. If the

daily closing price is the same one day as the next, the squared return and

therefore the volatility would be calculated to be zero, when there may

have been substantial intra-day fluctuations. Hansen and Lunde (2006) go

further and suggest that even the ranking of models by volatility forecast

accuracy could be inconsistent if the evaluation uses a poor proxy for the

true, underlying volatility.

Day and Lewis use two measures of ex post volatility in their study (for

which the frequency of data employed in the models is weekly):

(1) The square of the weekly return on the index, which they call SR

(2) The variance of the week’s daily returns multiplied by the number of

trading days in that week, which they call WV.

The Andersen and Bollerslev argument implies that the latter measure is

likely to be superior, and therefore that more emphasis should be placed

on those results.

The results for the separate regressions of realised volatility on a con-

stant and the forecast are given in table 8.3.

The coefficient estimates for b0 given in table 8.3 can be interpreted as

indicators of whether the respective forecasting approaches are biased. In

all cases, the b0 coefficients are close to zero. Only for the historic volatility

forecasts and the implied volatility forecast when the ex post measure is the

squared weekly return, are the estimates statistically significant. Positive

coefficient estimates would suggest that on average the forecasts are too

low. The estimated b1 coefficients are in all cases a long way from unity,

except for the GARCH (with daily variance ex post volatility) and EGARCH

(with squared weekly variance as ex post measure) models. Finally, the R2

values are very small (all less than 10%, and most less than 3%), suggesting

that the forecast series do a poor job of explaining the variability of the

realised volatility measure.

The forecast encompassing regressions are based on a procedure due to

Fair and Shiller (1990) that seeks to determine whether differing sets of

forecasts contain different sets of information from one another. The test

regression is of the form

σ 2
t+1 = b0 + b1σ

2
I t + b2σ

2
Gt + b3σ

2
Et + b4σ

2
Ht + ξt+1 (8.87)

with results presented in table 8.4.

The sizes and significances of the coefficients in table 8.4 are of interest.

The most salient feature is the lack of significance of most of the fore-

cast series. In the first comparison, neither the implied nor the GARCH



Table 8.3 Out-of-sample predictive power for weekly volatility forecasts

σ 2
t+1 = b0 + b1σ

2
f t + ξt+1 (8.84)

Proxy for ex

Forecasting model post volatility b0 b1 R2

Historic SR 0.0004 0.129 0.094

(5.60) (21.18)

Historic WV 0.0005 0.154 0.024

(2.90) (7.58)

GARCH SR 0.0002 0.671 0.039

(1.02) (2.10)

GARCH WV 0.0002 1.074 0.018

(1.07) (3.34)

EGARCH SR 0.0000 1.075 0.022

(0.05) (2.06)

EGARCH WV −0.0001 1.529 0.008

(−0.48) (2.58)

Implied volatility SR 0.0022 0.357 0.037

(2.22) (1.82)

Implied volatility WV 0.0005 0.718 0.026

(0.389) (1.95)

Notes: ‘Historic’ refers to the use of a simple historical average of the squared returns

to forecast volatility; t-ratios in parentheses; SR and WV refer to the square of the

weekly return on the S&P100, and the variance of the week’s daily returns

multiplied by the number of trading days in that week, respectively.

Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.

Table 8.4 Comparisons of the relative information content of out-of-sample volatility

forecasts

σ 2
t+1 = b0 + b1σ

2
I t + b2σ

2
Gt + b3σ

2
Et + b4σ

2
Ht + ξt+1 (8.87)

Forecast comparisons b0 b1 b2 b3 b4 R2

Implied versus GARCH −0.00010 0.601 0.298 − − 0.027

(−0.09) (1.03) (0.42)

Implied versus GARCH 0.00018 0.632 −0.243 − 0.123 0.038

versus Historical (1.15) (1.02) (−0.28) (7.01)

Implied versus EGARCH −0.00001 0.695 − 0.176 − 0.026

(−0.07) (1.62) (0.27)

Implied versus EGARCH 0.00026 0.590 −0.374 − 0.118 0.038

versus Historical (1.37) (1.45) (−0.57) (7.74)

GARCH versus EGARCH 0.00005 − 1.070 −0.001 − 0.018

(0.370) (2.78) (−0.00)

Notes: t-ratios in parentheses; the ex post measure used in this table is the variance

of the week’s daily returns multiplied by the number of trading days in that week.

Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.
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forecast series have statistically significant coefficients. When historical

volatility is added, its coefficient is positive and statistically significant.

An identical pattern emerges when forecasts from implied and EGARCH

models are compared: that is, neither forecast series is significant, but

when a simple historical average series is added, its coefficient is signif-

icant. It is clear from this, and from the last row of table 8.4, that the

asymmetry term in the EGARCH model has no additional explanatory

power compared with that embodied in the symmetric GARCH model.

Again, all of the R2 values are very low (less than 4%).

The conclusion reached from this study (which is broadly in line with

many others) is that within sample, the results suggest that implied

volatility contains extra information not contained in the GARCH/EGARCH

specifications. But the out-of-sample results suggest that predicting volatil-

ity is a difficult task!

8.20 Stochastic volatility models revisited

Under the heading of models for time-varying volatilities, only approaches

based on the GARCH class of models have been discussed thus far. Another

class of models is also available, known as stochastic volatility (SV) models.

It is a common misconception that GARCH-type specifications are sorts

of stochastic volatility models. However, as the name suggests, stochastic

volatility models differ from GARCH principally in that the conditional

variance equation of a GARCH specification is completely deterministic

given all information available up to that of the previous period. In other

words, there is no error term in the variance equation of a GARCH model,

only in the mean equation.

Stochastic volatility models contain a second error term, which enters

into the conditional variance equation. A very simple example of a stochas-

tic volatility model would be the autoregressive volatility specification de-

scribed in section 8.6. This model is simple to understand and simple to

estimate, because it requires that we have an observable measure of volatil-

ity which is then simply used as any other variable in an autoregressive

model. However, the term ‘stochastic volatility’ is usually associated with

a different formulation, a possible example of which would be

yt = μ + utσt , ut ∼ N (0, 1) (8.88)

log
(

σ 2
t

)

= α0 + β1 log
(

σ 2
t−1

)

+ σηηt (8.89)

where ηt is another N(0,1) random variable that is independent of ut . Here

the volatility is latent rather than observed, and so is modelled indirectly.
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Stochastic volatility models are closely related to the financial theories

used in the options pricing literature. Early work by Black and Scholes

(1973) had assumed that volatility is constant through time. Such an as-

sumption was made largely for simplicity, although it could hardly be

considered realistic. One unappealing side-effect of employing a model

with the embedded assumption that volatility is fixed, is that options

deep in-the-money and far out-of-the-money are underpriced relative to

actual traded prices. This empirical observation provided part of the gen-

esis for stochastic volatility models, where the logarithm of an unobserved

variance process is modelled by a linear stochastic specification, such

as an autoregressive model. The primary advantage of stochastic volatil-

ity models is that they can be viewed as discrete time approximations

to the continuous time models employed in options pricing frameworks

(see, for example, Hull and White, 1987). However, such models are hard

to estimate. For reviews of (univariate) stochastic volatility models, see

Taylor (1994), Ghysels et al. (1995) or Shephard (1996) and the references

therein.

While stochastic volatility models have been widely employed in the

mathematical options pricing literature, they have not been popular

in empirical discrete-time financial applications, probably owing to the

complexity involved in the process of estimating the model parameters

(see Harvey, Ruiz and Shephard, 1994). So, while GARCH-type models are

further from their continuous time theoretical underpinnings than

stochastic volatility, they are much simpler to estimate using maximum

likelihood. A relatively simple modification to the maximum likelihood

procedure used for GARCH model estimation is not available, and hence

stochastic volatility models are not discussed further here.

8.21 Forecasting covariances and correlations

A major limitation of the volatility models examined above is that they are

entirely univariate in nature -- that is, they model the conditional variance

of each series entirely independently of all other series. This is potentially

an important limitation for two reasons. First, to the extent that there

may be ‘volatility spillovers’ between markets or assets (a tendency for

volatility to change in one market or asset following a change in the

volatility of another), the univariate model will be misspecified. Second,

it is often the case in finance that the covariances between series are of

interest, as well as the variances of the individual series themselves. The

calculation of hedge ratios, portfolio value at risk estimates, CAPM betas,



Modelling volatility and correlation 429

and so on, all require covariances as inputs. Multivariate GARCH models

can potentially overcome both of these deficiencies with their univariate

counterparts. Multivariate extensions to GARCH models can be used to

forecast the volatilities of the component series, just as with univariate

models. In addition, because multivariate models give estimates for the

conditional covariances as well as the conditional variances, they have a

number of other potentially useful applications.

Several papers have investigated the forecasting ability of various mod-

els incorporating correlations. Siegel (1997), for example, finds that im-

plied correlation forecasts from traded options encompass all information

embodied in the historical returns (although he does not consider EWMA-

or GARCH-based models). Walter and Lopez (2000), on the other hand, find

that implied correlation is generally less useful for predicting the future

correlation between the underlying assets’ returns than forecasts derived

from GARCH models. Finally, Gibson and Boyer (1998) find that a diago-

nal GARCH and a Markov switching approach provide better correlation

forecasts than simpler models in the sense that the latter produce smaller

profits when the forecasts are employed in a trading strategy.

8.22 Covariance modelling and forecasting in finance: some examples

8.22.1 The estimation of conditional betas

The CAPM beta for asset i is defined as the ratio of the covariance be-

tween the market portfolio return and the asset return, to the variance of

the market portfolio return. Betas are typically constructed using a set of

historical data on market variances and covariances. However, like most

other problems in finance, beta estimation conducted in this fashion is

backward-looking, when investors should really be concerned with the

beta that will prevail in the future over the time that the investor is con-

sidering holding the asset. Multivariate GARCH models provide a simple

method for estimating conditional (or time-varying) betas. Then forecasts

of the covariance between the asset and the market portfolio returns and

forecasts of the variance of the market portfolio are made from the model,

so that the beta is a forecast, whose value will vary over time

βi,t =
σim,t

σ 2
m,t

(8.90)

where βi,t is the time-varying beta estimate at time t for stock i , σim,t is

the covariance between market returns and returns to stock i at time t

and σ 2
m,t is the variance of the market return at time t .
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8.22.2 Dynamic hedge ratios

Although there are many techniques available for reducing and manag-

ing risk, the simplest and perhaps the most widely used, is hedging with

futures contracts. A hedge is achieved by taking opposite positions in

spot and futures markets simultaneously, so that any loss sustained from

an adverse price movement in one market should to some degree be

offset by a favourable price movement in the other. The ratio of the num-

ber of units of the futures asset that are purchased relative to the number

of units of the spot asset is known as the hedge ratio. Since risk in this

context is usually measured as the volatility of portfolio returns, an in-

tuitively plausible strategy might be to choose that hedge ratio which

minimises the variance of the returns of a portfolio containing the spot

and futures position; this is known as the optimal hedge ratio. The optimal

value of the hedge ratio may be determined in the usual way, following

Hull (2005) by first defining:

�S = change in spot price S, during the life of the hedge �F = change

in futures price, F, during the life of the hedge σs = standard deviation

of �SσF = standard deviation of �Fp = correlation coefficient between

�S and �Fh = hedge ratio

For a short hedge (i.e. long in the asset and short in the futures contract),

the change in the value of the hedger’s position during the life of the

hedge will be given by (�S − h�F), while for a long hedge, the appropriate

expression will be (h�F − �S).

The variances of the two hedged portfolios (long spot and short futures

or long futures and short spot) are the same. These can be obtained from

var(h�F − �S)

Remembering the rules for manipulating the variance operator, this can

be written

var(�S) + var(h�F) − 2cov(�S, h�F)

or

var(�S) + h2var(�F) − 2hcov(�S, �F)

Hence the variance of the change in the value of the hedged position is

given by

v = σ 2
s + h2σ 2

F − 2hpσsσF (8.91)

Minimising this expression w.r.t. h would give

h = p
σs

σF

(8.92)
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Again, according to this formula, the optimal hedge ratio is time-

invariant, and would be calculated using historical data. However, what

if the standard deviations are changing over time? The standard devia-

tions and the correlation between movements in the spot and futures

series could be forecast from a multivariate GARCH model, so that the

expression above is replaced by

ht = pt

σs,t

σF,t

(8.93)

Various models are available for covariance or correlation forecasting, and

several will be discussed below.

8.23 Historical covariance and correlation

In exactly the same fashion as for volatility, the historical covariance or

correlation between two series can be calculated in the standard way using

a set of historical data.

8.24 Implied covariance models

Implied covariances can be calculated using options whose payoffs are

dependent on more than one underlying asset. The relatively small num-

ber of such options that exist limits the circumstances in which implied

covariances can be calculated. Examples include rainbow options, ‘crack-

spread’ options for different grades of oil, and currency options. In the

latter case, the implied variance of the cross-currency returns xy is given

by

σ̃ 2(xy) = σ̃ 2(x) + σ̃ 2(y) − 2σ̃ (x, y) (8.94)

where σ̃ 2(x) and σ̃ 2(y) are the implied variances of the x and y returns,

respectively, and σ̃ (x, y) is the implied covariance between x and y. By sub-

stituting the observed option implied volatilities of the three currencies

into (8.94), the implied covariance is obtained via

σ̃ (x, y) =
σ̃ 2(x) + σ̃ 2(y) − σ̃ 2(xy)

2
(8.95)

So, for instance, if the implied covariance between USD/DEM and USD/JPY

is of interest, then the implied variances of the returns of USD/DEM and

USD/JPY, as well as the returns of the cross-currency DEM/JPY, are required

so as to obtain the implied covariance using (8.94).
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8.25 Exponentially weighted moving average model for covariances

Again, as for the case of volatility modelling, an EWMA specification is

available that gives more weight in the calculation of covariance to recent

observations than the estimate based on the simple average. The EWMA

model estimate for covariance at time t and the forecast for subsequent

periods may be written

σ (x, y)t = (1 − λ)

∞
∑

i=0

λi xt−i yt−i (8.96)

with λ(0 < λ < 1) again denoting the decay factor, determining the rela-

tive weights attached to recent versus less recent observations.

8.26 Multivariate GARCH models

Multivariate GARCH models are in spirit very similar to their univari-

ate counterparts, except that the former also specify equations for how

the covariances move over time. Several different multivariate GARCH for-

mulations have been proposed in the literature, including the VECH, the

diagonal VECH and the BEKK models. Each of these is discussed in turn

below; for a more detailed discussion, see Kroner and Ng (1998). In each

case, it is assumed below for simplicity that there are two assets, whose

return variances and covariances are to be modelled. For an excellent sur-

vey of multivariate GARCH models, see Bauwens, Laurent and Rombouts

(2006).2

8.26.1 The VECH model

A common specification of the VECH model, initially due to Bollerslev,

Engle and Wooldridge (1988), is

VECH(Ht ) = C + AVECH(�t−1�
′
t−1) + BVECH(Ht−1)

�t |ψt−1 ∼ N (0, Ht ), (8.97)

where Ht is a 2 × 2 conditional variance--covariance matrix, �t is a 2 × 1

innovation (disturbance) vector, ψt−1 represents the information set at

time t − 1, C is a 3 × 1 parameter vector, A and B are 3 × 3 parameter

matrices and VECH (·) denotes the column-stacking operator applied to the

upper portion of the symmetric matrix. The model requires the estimation

2 It is also worth noting that there also exists a class of multivariate stochastic volatility

models. These were originally proposed by Harvey, Ruiz and Shephard (1994), although

see also Brooks (2006).
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of 21 parameters (C has 3 elements, A and B each have 9 elements). In

order to gain a better understanding of how the VECH model works, the

elements are written out below. Define

Ht =
[

h11t h12t

h21t h22t

]

, �t =
[

u1t

u2t

]

, C =

⎡

⎣

c11

c21

c31

⎤

⎦ ,

A =

⎡

⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ , B =

⎡

⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤

⎦ ,

The VECH operator takes the ‘upper triangular’ portion of a matrix, and

stacks each element into a vector with a single column. For example, in

the case of VECH(Ht ), this becomes

VECH(Ht ) =

⎡

⎢

⎣

h11t

h22t

h12t

⎤

⎥

⎦

where hiit represent the conditional variances at time t of the two-asset

return series (i = 1, 2) used in the model, and hi j t (i �= j) represent the con-

ditional covariances between the asset returns. In the case of VECH(�t�
′
t ),

this can be expressed as

VECH(�t�
′
t ) = VECH

([

u1t

u2t

][

u1t u2t

])

= VECH

(

u2
1t u1t u2t

u1t u2t u2
2t

)

=

⎡

⎢

⎣

u2
1t

u2
2t

u1t u2t

⎤

⎥

⎦

The VECH model in full is given by

h11t = c11 + a11u2
1t−1 + a12u2

2t−1 + a13u1t−1u2t−1 + b11h11t−1

+ b12h22t−1 + b13h12t−1 (8.98)

h22t = c21 + a21u2
1t−1 + a22u2

2t−1 + a23u1t−1u2t−1 + b21h11t−1

+ b22h22t−1 + b23h12t−1 (8.99)

h12t = c31 + a31u2
1t−1 + a32u2

2t−1 + a33u1t−1u2t−1 + b31h11t−1

+ b32h22t−1 + b33h12t−1 (8.100)

Thus, it is clear that the conditional variances and conditional covariances

depend on the lagged values of all of the conditional variances of, and
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conditional covariances between, all of the asset returns in the series, as

well as the lagged squared errors and the error cross-products. Estimation

of such a model would be quite a formidable task, even in the two-asset

case considered here.

8.26.2 The diagonal VECH model

Even in the simple case of two assets, the conditional variance and covari-

ance equations for the unrestricted VECH model contain 21 parameters. As

the number of assets employed in the model increases, the estimation of

the VECH model can quickly become infeasible. Hence the VECH model’s

conditional variance--covariance matrix has been restricted to the form

developed by Bollerslev, Engle and Wooldridge (1988), in which A and B

are assumed to be diagonal. This reduces the number of parameters to

be estimated to 9 (now A and B each have 3 elements) and the model,

known as a diagonal VECH, is now characterised by

hi j,t = ωi j + αi j ui,t−1u j,t−1 + βi j hi j,t−1 for i, j = 1, 2, (8.101)

where ωi j , αi j and βi j are parameters. The diagonal VECH multivariate

GARCH model could also be expressed as an infinite order multivariate

ARCH model, where the covariance is expressed as a geometrically de-

clining weighted average of past cross products of unexpected returns,

with recent observations carrying higher weights. An alternative solution

to the dimensionality problem would be to use orthogonal GARCH or

factor GARCH models (see Alexander, 2001). A disadvantage of the VECH

model is that there is no guarantee of a positive semi-definite covariance

matrix.

A variance--covariance or correlation matrix must always be ‘positive

semi-definite’, and in the case where all the returns in a particular series

are all the same so that their variance is zero is disregarded, then the

matrix will be positive definite. Among other things, this means that

the variance--covariance matrix will have all positive numbers on the

leading diagonal, and will be symmetrical about this leading diagonal.

These properties are intuitively appealing as well as important from a

mathematical point of view, for variances can never be negative, and the

covariance between two series is the same irrespective of which of the

two series is taken first, and positive definiteness ensures that this is

the case.

A positive definite correlations matrix is also important for many ap-

plications in finance -- for example, from a risk management point of

view. It is this property which ensures that, whatever the weight of each

series in the asset portfolio, an estimated value-at-risk is always positive.
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Fortunately, this desirable property is automatically a feature of time-

invariant correlations matrices which are computed directly using actual

data. An anomaly arises when either the correlation matrix is estimated

using a non-linear optimisation procedure (as multivariate GARCH mod-

els are), or when modified values for some of the correlations are used by

the risk manager. The resulting modified correlation matrix may or may

not be positive definite, depending on the values of the correlations that

are put in, and the values of the remaining correlations. If, by chance,

the matrix is not positive definite, the upshot is that for some weightings

of the individual assets in the portfolio, the estimated portfolio variance

could be negative.

8.26.3 The BEKK model

The BEKK model (Engle and Kroner, 1995) addresses the difficulty with

VECH of ensuring that the H matrix is always positive definite. It is rep-

resented by

Ht = W ′W + A′ Ht−1 A + B ′�t−1�
′
t−1 B (8.102)

where A, and B are 2 × 2 matrices of parameters and W is an upper tri-

angular matrix of parameters. The positive definiteness of the covariance

matrix is ensured owing to the quadratic nature of the terms on the

equation’s RHS.

8.26.4 Model estimation for multivariate GARCH

Under the assumption of conditional normality, the parameters of the

multivariate GARCH models of any of the above specifications can be es-

timated by maximising the log-likelihood function

ℓ(θ ) = −
TN

2
log 2π −

1

2

T
∑

t=1

(

log |Ht | + �′
t H−1

t �t

)

(8.103)

where θ denotes all the unknown parameters to be estimated, N is

the number of assets (i.e. the number of series in the system) and T

is the number of observations and all other notation is as above. The

maximum-likelihood estimate for θ is asymptotically normal, and thus

traditional procedures for statistical inference are applicable. Further de-

tails on maximum-likelihood estimation in the context of multivariate

GARCH models are beyond the scope of this book. But suffice to say that

the additional complexity and extra parameters involved compared with

univariate models make estimation a computationally more difficult task,

although the principles are essentially the same.
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8.27 A multivariate GARCH model for the CAPM with
time-varying covariances

Bollerslev, Engle and Wooldridge (1988) estimate a multivariate GARCH

model for returns to US Treasury Bills, gilts and stocks. The data employed

comprised calculated quarterly excess holding period returns for 6-month

US Treasury bills, 20-year US Treasury bonds and a Center for Research

in Security Prices record of the return on the New York Stock Exchange

(NYSE) value-weighted index. The data run from 1959Q1 to 1984Q2 -- a

total of 102 observations.

A multivariate GARCH-M model of the diagonal VECH type is employed,

with coefficients estimated by maximum likelihood, and the Berndt et al.

(1974) algorithm is used. The coefficient estimates are easiest presented in

the following equations for the conditional mean and variance equations,

respectively

∣

∣

∣

∣

∣

∣

y1t

y2t

y3t

∣
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Source: Bollerslev, Engle and Wooldridge (1988). Reprinted with the permission

of University of Chicago Press.

where y j t are the returns, ω j t−1 are a set vector of value weights at time

t − 1, i = 1, 2, 3, refers to bills, bonds and stocks, respectively and stan-

dard errors are given in parentheses. Consider now the implications of

the signs, sizes and significances of the coefficient estimates in (8.104)

and (8.105). The coefficient of 0.499 in the conditional mean equation

gives an aggregate measure of relative risk aversion, also interpreted as

representing the market trade-off between return and risk. This condi-

tional variance-in-mean coefficient gives the required additional return as

compensation for taking an additional unit of variance (risk). The inter-

cept coefficients in the conditional mean equation for bonds and stocks
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are very negative and highly statistically significant. The authors argue

that this is to be expected since favourable tax treatments for investing

in longer-term assets encourages investors to hold them even at relatively

low rates of return.

The dynamic structure in the conditional variance and covariance equa-

tions is strongest for bills and bonds, and very weak for stocks, as indicated

by their respective statistical significances. In fact, none of the parameters

in the conditional variance or covariance equations for the stock return

equations is significant at the 5% level. The unconditional covariance be-

tween bills and bonds is positive, while that between bills and stocks,

and between bonds and stocks, is negative. This arises since, in the lat-

ter two cases, the lagged conditional covariance parameters are negative

and larger in absolute value than those of the corresponding lagged error

cross-products.

Finally, the degree of persistence in the conditional variance (given by

α1 + β), which embodies the degree of clustering in volatility, is relatively

large for the bills equation, but surprisingly small for bonds and stocks,

given the results of other relevant papers in this literature.

8.28 Estimating a time-varying hedge ratio for FTSE
stock index returns

A paper by Brooks, Henry and Persand (2002) compared the effectiveness

of hedging on the basis of hedge ratios derived from various multivariate

GARCH specifications and other, simpler techniques. Some of their main

results are discussed below.

8.28.1 Background

There has been much empirical research into the calculation of opti-

mal hedge ratios. The general consensus is that the use of multivariate

generalised autoregressive conditionally heteroscedastic (MGARCH) mod-

els yields superior performances, evidenced by lower portfolio volatilities,

than either time-invariant or rolling ordinary least squares (OLS) hedges.

Cecchetti, Cumby and Figlewski (1988), Myers and Thompson (1989) and

Baillie and Myers (1991), for example, argue that commodity prices are

characterised by time-varying covariance matrices. As news about spot

and futures prices arrives to the market in discrete bunches, the condi-

tional covariance matrix, and hence the optimal hedging ratio, becomes

time-varying. Baillie and Myers (1991) and Kroner and Sultan (1993), inter

alia, employ MGARCH models to capture time-variation in the covariance

matrix and to estimate the resulting hedge ratio.
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8.28.2 Notation

Let St and Ft represent the logarithms of the stock index and stock index

futures prices, respectively. The actual return on a spot position held from

time t − 1 to t is �St = St − St−1 similarly, the actual return on a futures

position is �Ft = Ft − Ft−1. However at time t − 1 the expected return,

Et−1(Rt ), of the portfolio comprising one unit of the stock index and β

units of the futures contract may be written as

Et−1(Rt ) = Et−1(�St ) − βt−1 Et−1(�Ft ) (8.106)

where βt−1 is the hedge ratio determined at time t − 1, for employment

in period t . The variance of the expected return, h p,t , of the portfolio may

be written as

h p,t = hs,t + β2
t−1hF,t − 2βt−1hSF, t (8.107)

where h p,t , hs,t and hF,t represent the conditional variances of the portfolio

and the spot and futures positions, respectively and hSF,t represents the

conditional covariance between the spot and futures position. β∗
t−1, the op-

timal number of futures contracts in the investor’s portfolio, i.e. the opti-

mal hedge ratio, is given by

β∗
t−1 = −

hSF,t

hF,t

(8.108)

If the conditional variance--covariance matrix is time-invariant (and if St

and Ft are not cointegrated) then an estimate of β∗, the constant optimal

hedge ratio, may be obtained from the estimated slope coefficient b in

the regression

�St = a + b�Ft + ut (8.109)

The OLS estimate of the optimal hedge ratio could be given by b = hSF /hF .

8.28.3 Data and results

The data employed in the Brooks, Henry and Persand (2002) study com-

prises 3,580 daily observations on the FTSE 100 stock index and stock index

futures contract spanning the period 1 January 1985--9 April 1999. Several

approaches to estimating the optimal hedge ratio are investigated.

The hedging effectiveness is first evaluated in-sample, that is, where

the hedges are constructed and evaluated using the same set of data.

The out-of-sample hedging effectiveness for a 1-day hedging horizon is

also investigated by forming one-step-ahead forecasts of the conditional

variance of the futures series and the conditional covariance between the

spot and futures series. These forecasts are then translated into hedge



Modelling volatility and correlation 439

Table 8.5 Hedging effectiveness: summary statistics for portfolio returns

In-sample

Symmetric Asymmetric

Unhedged Naive hedge time-varying hedge time-varying hedge

β = 0 β = −1 βt =
hF S,t

hF,t

βt =
hF S,t

hF,t

(1) (2) (3) (4) (5)

Return 0.0389 −0.0003 0.0061 0.0060

{2.3713} {−0.0351} {0.9562} {0.9580}
Variance 0.8286 0.1718 0.1240 0.1211

Out-of-sample

Symmetric Asymmetric

Unhedged Naive hedge time-varying hedge time-varying hedge

β = 0 β = −1 βt =
hF S,t

hF,t

βt =
hF S,t

hF,t

Return 0.0819 −0.0004 0.0120 0.0140

{1.4958} {0.0216} {0.7761} {0.9083}
Variance 1.4972 0.1696 0.1186 0.1188

Note: t-ratios displayed as {.}.
Source: Brooks, Henry and Persand (2002).

ratios using (8.108). The hedging performance of a BEKK formulation is

examined, and also a BEKK model including asymmetry terms (in the same

style as GJR models). The returns and variances for the various hedging

strategies are presented in table 8.5.

The simplest approach, presented in column (2), is that of no hedge at

all. In this case, the portfolio simply comprises a long position in the cash

market. Such an approach is able to achieve significant positive returns in

sample, but with a large variability of portfolio returns. Although none of

the alternative strategies generate returns that are significantly different

from zero, either in-sample or out-of-sample, it is clear from columns (3)--

(5) of table 8.5 that any hedge generates significantly less return variability

than none at all.

The ‘naive’ hedge, which takes one short futures contract for every spot

unit, but does not allow the hedge to time-vary, generates a reduction

in variance of the order of 80% in-sample and nearly 90% out-of-sample

relative to the unhedged position. Allowing the hedge ratio to be time-

varying and determined from a symmetric multivariate GARCH model

leads to a further reduction as a proportion of the unhedged variance of

5% and 2% for the in-sample and holdout sample, respectively. Allowing

for an asymmetric response of the conditional variance to positive and
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Figure 8.5

Source: Brooks,

Henry and Persand

(2002). Time-varying

hedge ratios derived

from symmetric and

asymmetric BEKK

models for FTSE

returns.

negative shocks yields a very modest reduction in variance (a further 0.5%

of the initial value) in-sample, and virtually no change out-of-sample.

Figure 8.5 graphs the time-varying hedge ratio from the symmetric and

asymmetric MGARCH models. The optimal hedge ratio is never greater

than 0.96 futures contracts per index contract, with an average value of

0.82 futures contracts sold per long index contract. The variance of the

estimated optimal hedge ratio is 0.0019. Moreover the optimal hedge ratio

series obtained through the estimation of the asymmetric GARCH model

appears stationary. An ADF test of the null hypothesis β∗
t−1 ∼ I(1) (i.e. that

the optimal hedge ratio from the asymmetric BEKK model contains a

unit root) was strongly rejected by the data (ADF statistic = −5.7215,

5% Critical value = −2.8630). The time-varying hedge requires the sale

(purchase) of fewer futures contracts per long (short) index contract and

hence would save the firm wishing to hedge a short exposure money rela-

tive to the time-invariant hedge. One possible interpretation of the better

performance of the dynamic strategies over the naive hedge is that the dy-

namic hedge uses short-run information, while the naive hedge is driven

by long-run considerations and an assumption that the relationship be-

tween spot and futures price movements is 1:1.

Brooks, Henry and Persand also investigate the hedging performances

of the various models using a modern risk management approach. They

find, once again, that the time-varying hedge results in a considerable
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improvement, but that allowing for asymmetries results in only a very

modest incremental reduction in hedged portfolio risk.

8.29 Estimating multivariate GARCH models using EViews

In previous versions of the software, multivariate GARCH models could

only be estimated in EViews by writing the required instructions, but

now they are available using the menus. To estimate such a model, first

you need to create a system that contains the variables to be used. High-

light the three variables ‘reur’, ‘rgbp’, and ‘rjpy’ and then right click

the mouse. Choose Open/as System . . . ;Click Object/New Object and then

click System. Screenshot 8.6 will appear.

Screenshot 8.6

Making a system

Since no explanatory variables will be used in the conditional mean

equation, all of the default choices can be retained, so just click OK.

A system box containing the three equations with just intercepts will

be seen. Then click Proc/Estimate . . . for the ‘System Estimation’ window.

Change the ‘Estimation method’ to ARCH – Conditional Heteroscedastic-

ity. EViews permits the estimation of 3 important classes of multivariate

GARCH model: the diagonal VECH, the constant conditional correlation,
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and the diagonal BEKK models. For the error distribution, either a mul-

tivariate normal or a multivariate Student’s t can be used. Additional

exogenous variables can be incorporated into the variance equation, and

asymmetries can be allowed for. Leaving all of these options as the defaults

and clicking OK would yield the following results.3

System: UNTITLED

Estimation Method: ARCH Maximum Likelihood (Marquardt)

Covariance specification: Diagonal VECH

Date: 09/06/07 Time: 20:27

Sample: 7/08/2002 7/07/2007

Included observations: 1826

Total system (balanced) observations 5478

Presample covariance: backcast (parameter = 0.7)

Convergence achieved after 97 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) −0.024107 0.008980 −2.684689 0.0073

C(2) −0.014243 0.008861 −1.607411 0.1080

C(3) 0.005420 0.009368 0.578572 0.5629

Variance Equation Coefficients

C(4) 0.006725 0.000697 9.651785 0.0000

C(5) 0.054984 0.004840 11.36043 0.0000

C(6) 0.004792 0.000979 4.895613 0.0000

C(7) 0.129606 0.007495 17.29127 0.0000

C(8) 0.030076 0.003945 7.624554 0.0000

C(9) 0.006344 0.001276 4.971912 0.0000

C(10) 0.031130 0.002706 11.50347 0.0000

C(11) 0.047425 0.004734 10.01774 0.0000

C(12) 0.022325 0.004061 5.497348 0.0000

C(13) 0.121511 0.012267 9.905618 0.0000

C(14) 0.059994 0.007375 8.135074 0.0000

C(15) 0.034482 0.005079 6.788698 0.0000

C(16) 0.937158 0.004929 190.1436 0.0000

C(17) 0.560650 0.034187 16.39950 0.0000

C(18) 0.933618 0.011479 81.33616 0.0000

C(19) 0.127121 0.039195 3.243308 0.0012

C(20) 0.582251 0.047292 12.31189 0.0000

C(21) 0.931788 0.010298 90.47833 0.0000

Log likelihood −1935.756 Schwarz criterion 2.206582

Avg. log likelihood −0.353369 Hannan-Quinn criter. 2.166590

Akaike info criterion 2.143216

3 The complexity of this model means that it takes longer to estimate than any of the

univariate GARCH or other models examined previously.
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Equation: REUR = C(1)

R-squared −0.000151 Mean dependent var −0.018327

Adjusted R-squared −0.000151 S.D. dependent var 0.469930

S.E. of regression 0.469965 Sum squared resid 403.0827

Prob(F-statistic) 2.050379

Equation: RGBP = C(2)

R-squared −0.000006 Mean dependent var −0.015282

Adjusted R-squared −0.000006 S.D. dependent var 0.413105

S.E. of regression 0.413106 Sum squared resid 311.4487

Prob(F-statistic) 1.918603

Equation: RJPY = C(3)

R-squared −0.000087 Mean dependent var 0.001328

Adjusted R-squared −0.000087 S.D. dependent var 0.439632

S.E. of regression 0.439651 Sum squared resid 352.7596

Prob(F-statistic) 1.981767

Covariance specification: Diagonal VECH

GARCH = M + A1.∗RESID(−1)∗RESID(−1)′ + B1.∗GARCH(−1)

M is an indefinite matrix

A1 is an indefinite matrix

B1 is an indefinite matrix

Transformed Variance Coefficients

Coefficient Std. Error z-Statistic Prob.

M(1,1) 0.006725 0.000697 9.651785 0.0000

M(1,2) 0.054984 0.004840 11.36043 0.0000

M(1,3) 0.004792 0.000979 4.895613 0.0000

M(2,2) 0.129606 0.007495 17.29127 0.0000

M(2,3) 0.030076 0.003945 7.624554 0.0000

M(3,3) 0.006344 0.001276 4.971912 0.0000

A1(1,1) 0.031130 0.002706 11.50347 0.0000

A1(1,2) 0.047425 0.004734 10.01774 0.0000

A1(1,3) 0.022325 0.004061 5.497348 0.0000

A1(2,2) 0.121511 0.012267 9.905618 0.0000

A1(2,3) 0.059994 0.007375 8.135074 0.0000

A1(3,3) 0.034482 0.005079 6.788698 0.0000

B1(1,1) 0.937158 0.004929 190.1436 0.0000

B1(1,2) 0.560650 0.034187 16.39950 0.0000

B1(1,3) 0.933618 0.011479 81.33616 0.0000

B1(2,2) 0.127121 0.039195 3.243308 0.0012

B1(2,3) 0.582251 0.047292 12.31189 0.0000

B1(3,3) 0.931788 0.010298 90.47833 0.0000
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The first panel of the table presents the conditional mean estimates; in

this example, only intercepts were used in the mean equations. The next

panel shows the variance equation coefficients, followed by some mea-

sures of goodness of fit for the model as a whole and then for each indi-

vidual mean equation. The final panel presents the transformed variance

coefficients, which in this case are identical to the panel of variance co-

efficients since no transformation is conducted with normal errors (these

would only be different if a Student’s t specification were used). It is evi-

dent that the parameter estimates are all both plausible and statistically

significant.

There are a number of useful further steps that can be conducted once

the model has been estimated, all of which are available by clicking the

‘View’ button. For example, we can plot the series of residuals, or estimate

the correlations between them. Or by clicking on ‘Conditional variance’,

we can list or plot the values of the conditional variances and covariances

over time. We can also test for autocorrelation and normality of the errors.

Key concepts
The key terms to be able to define and explain from this chapter are

● non-linearity ● GARCH model

● conditional variance ● Wald test

● maximum likelihood ● likelihood ratio test

● lagrange multiplier test ● GJR specification

● asymmetry in volatility ● exponentially weighted

● constant conditional correlation moving average

● diagonal VECH ● BEKK model

● news impact curve ● GARCH-in-mean

● volatility clustering

Appendix: Parameter estimation using maximum likelihood

For simplicity, this appendix will consider by way of illustration the bivari-

ate regression case with homoscedastic errors (i.e. assuming that there is

no ARCH and that the variance of the errors is constant over time). Sup-

pose that the linear regression model of interest is of the form

yt = β1 + β2xt + ut (8A.1)

Assuming that ut ∼ N(0, σ 2), then yt ∼ N(β1 + β2xt , σ
2) so that the prob-

ability density function for a normally distributed random variable with
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this mean and variance is given by

f (yt | β1 + β2xt , σ
2) =

1

σ
√

2π
exp

{

−
1

2

(yt − β1 − β2xt )
2

σ 2

}

(8A.2)

The probability density is a function of the data given the parameters.

Successive values of yt would trace out the familiar bell-shaped curve of

the normal distribution. Since the ys are iid, the joint probability density

function (pdf) for all the ys can be expressed as a product of the individual

density functions

f (y1, y2, . . . , yT | β1 + β2x1, β1 + β2x2, . . . , β1 + β2xT , σ 2)

= f (y1 | β1 + β2x2, σ
2) f (y2 | β1 + β2x2, σ

2) . . . f (yT | β1 + β2xT, σ
2)

=
T

∏

t=1

f (yt | β1 + β2xt , σ
2) for t = 1, . . . , T (8A.3)

The term on the LHS of this expression is known as the joint density

and the terms on the RHS are known as the marginal densities. This result

follows from the independence of the y values, in the same way as un-

der elementary probability, for three independent events A, B and C, the

probability of A, B and C all happening is the probability of A multiplied

by the probability of B multiplied by the probability of C. Equation (8A.3)

shows the probability of obtaining all of the values of y that did occur.

Substituting into (8A.3) for every yt from (8A.2), and using the result that

Aex1 × Aex2 × · · · AexT = AT (ex1 × ex2 × · · · × exT ) = AT e(x1+x2+ ···+xT ), the fol-

lowing expression is obtained

f (y1, y2, . . . , yT | β1 + β2xt , σ
2)

=
1

σ T (
√

2π )T
exp

{

−
1

2

T
∑

t=1

(yt − β1 − β2xt )
2

σ 2

}

(8A.4)

This is the joint density of all of the ys given the values of xt , β1, β2 and

σ 2. However, the typical situation that occurs in practice is the reverse of

the above situation -- that is, the xt and yt are given and β1, β2, σ 2 are to be

estimated. If this is the case, then f (•) is known as a likelihood function,

denoted LF(β1, β2, σ 2), which would be written

L F(β1, β2, σ
2) =

1

σ T (
√

2π )T
exp

{

−
1

2

T
∑

t=1

(yt − β1 − β2xt )
2

σ 2

}

(8A.5)

Maximum likelihood estimation involves choosing parameter values (β1,

β2, σ 2) that maximise this function. Doing this ensures that the values of

the parameters are chosen that maximise the likelihood that we would
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have actually observed the ys that we did. It is necessary to differentiate

(8A.5) w.r.t. β1, β2, σ 2, but (8A.5) is a product containing T terms, and so

would be difficult to differentiate.

Fortunately, since max
x

f (x) = max
x

ln( f (x)), logs of (8A.5) can be taken,

and the resulting expression differentiated, knowing that the same opti-

mal values for the parameters will be chosen in both cases. Then, using

the various laws for transforming functions containing logarithms, the

log-likelihood function, LLF is obtained

LLF = −T ln σ −
T

2
ln(2π ) −

1

2

T
∑

t=1

(yt − β1 − β2xt )
2

σ 2
(8A.6)

which is equivalent to

LLF = −
T

2
ln σ 2 −

T

2
ln(2π ) −

1

2

T
∑

t=1

(yt − β1 − β2xt )
2

σ 2
(8A.7)

Only the first part of the RHS of (8A.6) has been changed in (8A.7) to make

σ 2 appear in that part of the expression rather than σ .

Remembering the result that

∂

∂x
(ln(x)) =

1

x

and differentiating (8A.7) w.r.t. β1, β2, σ 2, the following expressions for

the first derivatives are obtained

∂LLF

∂β1

= −
1

2

∑ (yt − β1 − β2xt ).2. − 1

σ 2
(8A.8)

∂LLF

∂β2

= −
1

2

∑ (yt − β1 − β2xt ).2. − xt

σ 2
(8A.9)

∂LLF

∂σ 2
= −

T

2

1

σ 2
+

1

2

∑ (yt − β1 − β2xt )
2

σ 4
(8A.10)

Setting (8A.8)--(8A.10) to zero to minimise the functions, and placing hats

above the parameters to denote the maximum likelihood estimators, from

(8A.8)

∑

(yt − β̂1 − β̂2xt ) = 0 (8A.11)
∑

yt −
∑

β̂1 −
∑

β̂2xt = 0 (8A.12)
∑

yt − T β̂1 − β̂2

∑

xt = 0 (8A.13)

1

T

∑

yt − β̂1 − β̂2

1

T

∑

xt = 0 (8A.14)
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Recall that

1

T

∑

yt = ȳt

the mean of y and similarly for x , an estimator for β̂1 can finally be derived

β̂1 = ȳ − β̂2 x̄ (8A.15)

From (8A.9)

∑

(yt − β̂1 − β̂2xt )xt = 0 (8A.16)

∑

yt xt −
∑

β̂1xt −
∑

β̂2x2
t = 0 (8A.17)

∑

yt xt − β̂1

∑

xt − β̂2

∑

x2
t = 0 (8A.18)

β̂2

∑

x2
t =

∑

yt xt − (ȳ − β̂2 x̄)
∑

xt (8A.19)

β̂2

∑

x2
t =

∑

yt xt − T xy + β̂2T x̄2 (8A.20)

β̂2

(

∑

x2
t −T x̄2

)

=
∑

yt xt − T xy (8A.21)

β̂2 =
∑

yt xt − T xy
(
∑

x2
t −T x̄2

) (8A.22)

From (8A.10)

T

σ̂ 2
=

1

σ̂ 4

∑

(yt − β̂1 − β̂2xt )
2 (8A.23)

Rearranging,

σ̂ 2 =
1

T

∑

(yt − β̂1 − β̂2xt )
2 (8A.24)

But the term in parentheses on the RHS of (8A.24) is the residual for time

t (i.e. the actual minus the fitted value), so

σ̂ 2 =
1

T

∑

û2
t (8A.25)

How do these formulae compare with the OLS estimators? (8A.15) and

(8A.22) are identical to those of OLS. So maximum likelihood and OLS

will deliver identical estimates of the intercept and slope coefficients.
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However, the estimate of σ̂ 2 in (8A.25) is different. The OLS estimator

was

σ̂ 2 =
1

T − k

∑

û2
t (8A.26)

and it was also shown that the OLS estimator is unbiased. Therefore, the

ML estimator of the error variance must be biased, although it is consis-

tent, since as T → ∞, T − k ≈ T .

Note that the derivation above could also have been conducted using

matrix rather than sigma algebra. The resulting estimators for the inter-

cept and slope coefficients would still be identical to those of OLS, while

the estimate of the error variance would again be biased. It is also worth

noting that the ML estimator is consistent and asymptotically efficient.

Derivation of the ML estimator for the GARCH LLF is algebraically difficult

and therefore beyond the scope of this book.

Review questions

1. (a) What stylised features of financial data cannot be explained using

linear time series models?

(b) Which of these features could be modelled using a GARCH(1,1)

process?

(c) Why, in recent empirical research, have researchers preferred

GARCH(1,1) models to pure ARCH(p)?

(d) Describe two extensions to the original GARCH model. What

additional characteristics of financial data might they be able to

capture?

(e) Consider the following GARCH(1,1) model

yt = μ + ut , ut ∼ N
(

0, σ 2
t

)

(8.110)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.111)

If yt is a daily stock return series, what range of values are likely for

the coefficients μ, α0, α1 and β?

(f) Suppose that a researcher wanted to test the null hypothesis that

α1 + β = 1 in the equation for part (e). Explain how this might be

achieved within the maximum likelihood framework.

(g) Suppose now that the researcher had estimated the above GARCH

model for a series of returns on a stock index and obtained the

following parameter estimates: μ̂ = 0.0023, α̂0 = 0.0172,

β̂ = 0.9811, α̂1 = 0.1251. If the researcher has data available up to
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and including time T , write down a set of equations in σ 2
t and u2

t

their lagged values, which could be employed to produce one-, two-,

and three-step-ahead forecasts for the conditional variance of yt .

(h) Suppose now that the coefficient estimate of β̂ for this model is

0.98 instead. By re-considering the forecast expressions you derived

in part (g), explain what would happen to the forecasts in this case.

2. (a) Discuss briefly the principles behind maximum likelihood.

(b) Describe briefly the three hypothesis testing procedures that are

available under maximum likelihood estimation. Which is likely to be

the easiest to calculate in practice, and why?

(c) OLS and maximum likelihood are used to estimate the parameters of

a standard linear regression model. Will they give the same

estimates? Explain your answer.

3. (a) Distinguish between the terms ‘conditional variance’ and

‘unconditional variance’. Which of the two is more likely to be

relevant for producing:

i. 1-step-ahead volatility forecasts

ii. 20-step-ahead volatility forecasts.

(a) If ut follows a GARCH(1,1) process, what would be the likely result if

a regression of the form (8.110) were estimated using OLS and

assuming a constant conditional variance?

(b) Compare and contrast the following models for volatility, noting their

strengths and weaknesses:

i. Historical volatility

ii. EWMA

iii. GARCH(1,1)

iv. Implied volatility.

4. Suppose that a researcher is interested in modelling the correlation

between the returns of the NYSE and LSE markets.

(a) Write down a simple diagonal VECH model for this problem. Discuss

the values for the coefficient estimates that you would expect.

(b) Suppose that weekly correlation forecasts for two weeks ahead are

required. Describe a procedure for constructing such forecasts from

a set of daily returns data for the two market indices.

(c) What other approaches to correlation modelling are available?

(d) What are the strengths and weaknesses of multivariate GARCH

models relative to the alternatives that you propose in part (c)?

5. (a) What is a news impact curve? Using a spreadsheet or otherwise,

construct the news impact curve for the following estimated EGARCH

and GARCH models, setting the lagged conditional variance to the
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value of the unconditional variance (estimated from the sample data

rather than the mode parameter estimates), which is 0.096

σ 2
t = α0 + α1u2

t−1 + α2σ
2
t−1 (8.112)

log
(

σ 2
t

)

= α0 + α1

ut−1
√

σ 2
t−1

+ α2 log
(

σ 2
t−1

)

+ α3

⎡

⎣

|ut−1 |
√

σ 2
t−1

−
√

2

π

⎤

⎦ (8.113)

GARCH EGARCH

μ −0.0130 −0.0278

(0.0669) (0.0855)

α0 0.0019 0.0823

(0.0017) (0.5728)

α1 0.1022∗∗ −0.0214

(0.0333) (0.0332)

α2 0.9050∗∗ 0.9639∗∗

(0.0175) (0.0136)

α3 − 0.2326∗∗

(0.0795)

(b) In fact, the models in part (a) were estimated using daily foreign

exchange returns. How can financial theory explain the patterns

observed in the news impact curves?

6. Using EViews, estimate a multivariate GARCH model for the spot and

futures returns series in ‘sandphedge.wf1’. Note that these series are

somewhat short for multivariate GARCH model estimation. Save the

fitted conditional variances and covariances, and then use these to

construct the time-varying optimal hedge ratios. Compare this plot with

the unconditional hedge ratio calculated in chapter 2.


